М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
olenanuchajj8
olenanuchajj8
28.10.2021 09:28 •  Математика

Есть некоторые пересекающиеся фигуры, нарисованные на плоскости. площади фигур: 100, 70, 90, 80. известно, что площадь заштрихованных областей в 3 раза больше площади областей, окрашенных черным цветом. вычисли площадь областей, залитых белым цветом, и запиши это число в качестве ответа.

👇
Ответ:
гикат
гикат
28.10.2021
Это же тур городов. если это не так фото скинь
4,6(91 оценок)
Открыть все ответы
Ответ:
inara12345
inara12345
28.10.2021

y''' - 4y' = 24e^{2x} - 4\cos 2x + 8\sin 2x — неоднородное дифференциальное уравнение третьего порядка с постоянными коэффициентами

Принцип суперпозиции решений

Общее решение такого уравнения: y = y^{*} + \widetilde{y}, где y^{*} — общее решение соответствующего однородного уравнения, \widetilde{y} — частное решение неоднородного дифференциального уравнения с постоянными коэффициентами.

1) \ y^{*}: \ y''' - 4y' = 0

Метод Эйлера: y = e^{kx}; \ y' = ke^{kx}; \ y''' = k^{3}e^{kx}

Характеристическое уравнение: k^{3} - 4k = 0

k(k^{2}- 4) = 0

\left[\begin{array}{ccc}k_{1} = 0, \ \ \ \ \\k_{2,3} = \pm 2\\\end{array}\right

Фундаментальная система решений:

y_{1} = e^{0x} = 1; \ y_{2} = e^{-2x}; \ y_{3} = e^{2x}

Общее решение: y^{*} = C_{1}y_{1} + C_{2}y_{2} + C_{3}y_{3} = C_{1} + C_{2}e^{-2x} + C_{3}e^{2x}

2) \ \widetilde{y}: \ f(x) = 24e^{2x} - 4\cos 2x + 8\sin 2x

Здесь  f_{1}(x) = 24e^{2x}; \ f_{2}(x) = -4\cos 2x + 8\sin 2x

Контрольные числа: \alpha_{1} = 2 = k_{3} — является корнем характеристического уравнения; \alpha_{2} = 0 \pm 2i \neq k_{1,2,3} — не является корнем характеристического уравнения;

Тогда \widetilde{y}_{1} = Axe^{2x} и \widetilde{y}_{2} = e^{0x}(B\cos 2x + C\sin 2x) = B\cos 2x + C\sin 2x

\widetilde{y} = \widetilde{y}_{1} + \widetilde{y}_{2} =Axe^{2x} + B\cos 2x + C\sin 2x

\widetilde{y}' = Ae^{2x} + 2Axe^{2x} -2B\sin 2x + 2C\cos 2x

\widetilde{y}'' = 4Ae^{2x} + 4Axe^{2x} - 4B\cos 2x - 4C\sin 2x

\widetilde{y}''' = 12Ae^{2x} + 8Axe^{2x} + 8B\sin 2x - 8C\cos 2x

Находим неизвестные коэффициенты A, \ B, \ C методом неопределенных коэффициентов:

12Ae^{2x} + 8Axe^{2x} + 8B\sin 2x - 8C\cos 2x - 4(Ae^{2x} + 2Axe^{2x} -2B\sin 2x + 2C\cos 2x) = 24e^{2x} - 4\cos 2x + 8\sin 2x

8Ae^{2x} + 16B\sin 2x - 16C\cos 2x = 24e^{2x} - 4\cos 2x + 8\sin 2x

Коэффициенты около e^{2x}:

8A = 24; \ A = 3

Коэффициенты около \sin 2x:

16B = 8; \ B = \dfrac{1}{2}

Коэффициенты около \cos 2x:

-16C = -4; \ C = \dfrac{1}{4}

Таким образом, \widetilde{y} =3xe^{2x} + \dfrac{1}{2} \cos 2x + \dfrac{1}{4} \sin 2x

Общее решение заданного уравнения:

y = y^{*} + \widetilde{y} = C_{1} + C_{2}e^{-2x} + C_{3}e^{2x} + 3xe^{2x} + \dfrac{1}{2} \cos 2x + \dfrac{1}{4} \sin 2x

ответ: y = C_{1} + C_{2}e^{-2x} + C_{3}e^{2x} + 3xe^{2x} + \dfrac{1}{2} \cos 2x + \dfrac{1}{4} \sin 2x

4,8(31 оценок)
Ответ:
maximpopov2001
maximpopov2001
28.10.2021

1)

5x^{4} +6x^{2}

2)

функция - не монотонная

экстремумы: (-6; 540), (8; -832)

3)

минимум f(4)= -1

максимум f(2)=3

Пошаговое объяснение:

1)

просто диференцируем по частям

2)

f'(x)=3x^2-6x-144=3(x^2-2x-48)=3(x^2-2x+(1-1)-48)=\\=3((x-1)^2-49)=3((x-1)^2-7^2)=3((x-1-7)(x-1+7))=3(x-8)(x+6)

это производная исходной функции

как бы тут уже видно, что производная:

квадратичная парабола,

роги вверх,

знак меняет (а это значит, что исходная функция - не монотонная) в точках: x1 = -6; x2 = 8. это и будут точки экстремумов

минимум и максимум производной нас не интересуют

Решаем уравнение

f'(x)=0

3(x-8)(x+6) = 0

x1 = -6

x2 = 8

y1 = 540 = (-6)³ -3*(-6)² - 144*(-6) = -216 -108 + 864 = -324 + 864 = 540

y2 = -832 = 8³ -3*8² -144*8 = 8*64 - 3*64 - 144*8 = 5*8*8 - 144*8 =

= 8*(40-144) = 8*(-104) = -800 -32= -832

3)

f(2) = 4-16+15 = 3

f(5) = 25 -40 +15 =0

f'(x) = 2x-8

f'(x) = 0 при х = 4

f(4) = 16 - 32 +15 = -1

из f(2)=3, f(4)= -1, f(5)=0 выбираем минимум и максимум

минимум f(4)= -1

максимум f(2)=3

прим.: на втором таки уткнулся. противно его считать в голове. по быстрому там тупо решается квадратное уравнение через дискриминант на листике

4,5(97 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ