0,003
Пошаговое объяснение:
Данную задачу будем решать по формуле:
Р(А) = m / n
Где Р(А) – вероятность события А, m – число благоприятствующих исходов этому событию, n – общее число всевозможных исходов.
Применим данную теорию к нашей задаче:
А – событие, при котором купленная сумка окажется без дефектов;
Р(А) – вероятность того, что купленная сумка окажется без дефектов.
Определим m и n:
m — число благоприятствующих этому событию исходов, то есть число исходов, когда купленная сумка окажется без дефектов. Это число равно количеству сумок без дефектов:
m =1356 – 5 = 1351
n – общее число всевозможных исходов, оно равно общему количеству сумок:
n = 1356
Осталось найти вероятность того, что купленная сумка окажется без дефектов:
Р(А) = 5 / 1356= 0,003
Пошаговое объяснение:
1 Частные производные для F(x,y,z)=1
dFx=2x, dFy=-2y, dFz=-2z
Значения частных производных в заданной точке - это координаты вектора нормали для касательной плоскости N=(2,4,-4)
Уравнение плоскости A*x+B*y+C*z+D=0
A=Nx=2 B=Ny=4 C=Nz=-4
D=-(Nx*Mx+Ny*My+Mz*Mz)=-(2*1+4*(-2)+(-4)*2)=14
Плоскость 2x+4y-4z+14=0
Нормаль (x-1)/2=(y+2)/4=(2-z)/4
2 Частные производные для F(x,y,z)=2
dFx=2xz-2y^3, dFy=-6xy^2, dFz=12z^3+x^2
Значения частных производных в заданной точке - это координаты вектора нормали для касательной плоскости N=(0,-6,13)
Уравнение плоскости A*x+B*y+C*z+D=0
A=Nx=0 B=Ny=-6 C=Nz=13
D=-(Nx*Mx+Ny*My+Mz*Mz)=-(0*1+(-6)*1+13*1)=-7
Плоскость -6y+13z-7=0
Нормаль (1-y)/6=(z-1)/13
3. Производные на вложенном изображении.
Чтобы перейти к целым числам значения производных в т (1,1,1) домножены на 6.
Вектор нормали тогда N=(3,5,38)
Уравнение плоскости 3x+5y+38z-46=0
Нормаль (x-1)/3=(y-1)/5=(z-1)/38