М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
polina150606
polina150606
20.01.2022 13:32 •  Математика

Ниткой измерить окружность (её длину), измерить её диаметр. посчитать частно

👇
Ответ:
shavkatbronduk1
shavkatbronduk1
20.01.2022
Сначало обводишь вокруг окружности ниткой и там где она закончилась отмерь линейкой.
Всё
4,7(23 оценок)
Открыть все ответы
Ответ:
Kotik77789
Kotik77789
20.01.2022
Пусть функция f(x)=x^2+2 определена на множестве E E\subseteq |R
Пусть \delta=\frac{\epsilon}{2x_0+1} где x_0 \in E.
Понятно, что для любого x на области \delta от x_0 (то есть: x \in &#10;(x_0-\delta,x_0+\delta)) выполняется |x+x_0|<|2x_0+ \frac{\delta}{2}|.
Следовательно, для \delta<2, выполняется |x+x_0|<|2x_0+1|.

|(x^2+2)-(x_0^2+2)|=|x^2-x_0^2|=|x-x_0|\cdot|x+x_0| < |x-x_0|\cdot|2x_0+1| \\&#10;\delta= \frac{\epsilon}{x_0+1} \ \ \ = \ \ \ |x^2-x_0^2|< |x-x_0|\cdot|2x_0+1|<\delta|2x_0+1|=\epsilon

Получили, что для любого \epsilon 0 есть \delta=\frac{\epsilon}{x_0+1}<1, на области которой выполняется |f(x)-f(x_0)|<\epsilon
(Проще говоря:
\forall&#10; \epsilon0 \ \ \exists\delta0 \ \ : \ \ |x-x_0|<\delta \ \ &#10;\bigwedge \ \ |f(x)-f(x_0)|<\epsilon). Следовательно - \lim_{x &#10;\to x_0} f(x)=f(x_0).
Что и требовалось доказать.
Для x_0=-1 нужно отдельно доказать предел \lim_{x \to -1} f(x)=f(-1).

Теперь в чём проблема самого вопроса: мы только что доказали непрерывность функции на любом подмножестве |R. Но! Множество натуральных чисел |N тоже подмножество |R, значит f:|N \longrightarrow |R тоже непрерывна, получается - доказали что f непрерывна на области определения? Известно, что g(x) \frac{1}{x} тоже непрерывна на области определения, но g, понятное дело, не определена на |R!
Потому вопрос, ИМХО, поставлен не верно (претензия не к тебе, а скорее к преподавателям твоим). Правильно задать вопрос указывая то множесто точек, которое интересует: к примеру "непрерывна на |R" или, "непрерывна на отрезке (x_0-a,x_0+a)"...
Тем более, что есть понятие "равномерная непрерывность" - свойство области, а не так, как "непрерывность" - свойство точки. Отсюда и непонимание.
А то получается: спрашивают об области, а проверяют точку.
Будут вопросы - пиши.

P.S. Исправил ошибки в наборе символов. Текста много :)
4,7(52 оценок)
Ответ:
stebone
stebone
20.01.2022

1 a

2 a

3 ә

8 жолдас товарищ

қарындас мл.сестра

тату дружный

немере внук, внучка

аға ст.брат

іні мл.брат

жиен племянник

танысу знакомство

жақын близкий, родной

дәстүр традиция, обычай

Пошаговое объяснение:

2 задание

От-ба-сы-мыз 4буын, 9әріп, 9дыбыс

о-дауысты, жуан, ашық, еріндік

т-дауыссыз, қатаң

б-дауыссыз үнді

а-дауысты, ашық, жуан, езулік

с-дауыссыз, қатаң

ы-дауысты, жуан, қысаң, езулік

м-дауыссыз үнді

ы-дауысты, жуан, қысаң, езулік

з- дауыссыз, ұяң

шө-бе-ре-сі 4 буын 8әріп 8дыбыс

ш-дауыссыз, қатаң

ө-дауысты, жіңішке, ашық, еріндік

б-дауыссыз, ұяң

е-дауысты, ашық, жіңішке, езулік

р-дауыссыз, үнді

е-

с-дауыссыз, қатаң

і-дауысты, жіңішке, қысаң, езулік

мү ше ле рі 4буын 8әріп 8дыбыс

м-дауыссыз, үнді

ү-дауысты, жіңішке, қысаң, еріндік

ш-дауыссыз қатаң

е-

л-дауыссыз үнді

е-

р-дауыссыз, үнді

і-

3.О-қу-шы-лар

о, қу, шы-ашық буындар

лар-бітеу буын

ә-кем

ә -ашық буын

кем -бітеу буын

а-ғам-ның

а-ашық буын

ғам, ның - бітеу буындар

дәс-түр-лер

барлығы бітеу буын

от-ба-сы-мыз-дың

от-тұйық буын

ба, сы - ашық

мыз, дың -бітеу буындар

4,4(82 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ