Пусть х – рублей стоит одна ракетка, а у рублей – один мяч. После скидок стоимость ракетки снизили на 25% , т.е. стоимость ракетки составила 75 % (100%-25%) от х или 0,75х, а стоимость мяча снизилась – 0,90у.
Составим систему уравнений : 8х+10у=4560 8*0,75х+10*0,90у=3780
8х+10у=4560 6x+9y=3780
Решить систему уравнений методом сложения (возьмите систему в скобки {): _8х+10у=4560 [*9 6x+9y=3780 [*10
9(8х+10у)-10(6x+9y)=9*4560-10*3780 72x+90y-60x-90y=41040-37800 12x=3240 х=270 (рублей) – стоит одна ракетки. 8*270+10у=4560 2160+10у=4560 10у=2400 у=240 (рублей) – стоит один мяч ответ: стоимость одно ракетки - 270 рублей, стоимость одного мяча=240 рублей.
Поскольку весы именно чашечные, то задача нахождения фальшивой монеты из N сводится к бинарному поиску - мы каждый раз делим исходную кучку пополам (или на три части, если пополам не делится), определяем ту, которая легче, затем поступаем с ней аналогично. И т.д. пока сравнение не сведется к 2-м монетам - более легкая из них и есть искомая. При этом для N монет нам понадобится log2(N) взвешиваний. Если N не степень двойки, то округление идет до ближайшей СЛЕДУЮЩЕЙ. Т.о. в нашем примере log2(N) = 4. Откуда N = 2^4 = 16. 16 монет.
Пошаговое объяснение:
3030|_30
-30 101
30
30
0