Пусть нам дана некоторая прогрессия b(n): b1;b2;b3;b4.
По условию, нам дана сумма каких-то чисел. Давайте запишем их.
Во-первых, у нас дана сумма нечётных членов:
b1 + b3 + b5 + ... + b51 = 28
Во-вторых, сумма членов с чётными номерами равна 7, то есть:
b2 + b4 + b6 + ... + b52 = 7
Запишем эти ряды друг под другом:
b1 + b3 + b5 + ... + b51 = 28
b2 + b4 + b6 + ... + b52 = 7
Теперь каждый член в одном ряду является соседним с соответственным членом в другом ряду.
Замечаем, что знаменателем прогрессии является отношение последующего и предыддущего членов.
q = b2/b1; q = b3/b2 и так далее.
Разделим второй ряд на первый и будем иметь:
b2/b1 + b4/b3 + b6/b5... + b52/b51 = 7/28
Мы знаем, что b2/b1 = q; b4/b3 = q; b52/b51 = q. Всего таких пар 52 / 2 = 26.
То есть, 26q = 7/28.
Отсюда q = 7/28 : 26 = 7/728 = 1/104.
Знаменатель прогрессии равен 1/104
Пошаговое объяснение: а) f(x)= x³ -3x ⇒ f'(x)=3x² - 3. Найдём критические точки: f'(x)=0 ⇒ 3x² - 3=0 ⇒ x²-1=0 ⇒x²=1 ⇒ x₁₂=±1/ Но х= -1 ∉ [0;3], значит х=1 -крит.точка. Найдём значения функции в критической точке и на концах промежутка: f(1)=1³ - 3·1 = -2 f(0)=0³- 3·0= 0 f(3)= 3³-3·3=18. Cледовательно max f(x)=f(3)=18, min f(x)=f(1)= - 2 б) f(x)= x⁴-2x²+3 ⇒ f'(x)= 4x³-4x . Если f'(x)=0, то 4x³-4x =0 ⇒ x(x-1)=0 ⇒ x₁=0, x₂=1 -критические т.очки, они ∈[0 ; 2]. Найдём значения функции в критических точкач и на концах промежутка: f(0) =3
f(1)=1⁴-2·1²+3=2 f(2)=16-8+3=11. Cледовательно max f(x)=f(2)=18, min f(x)=f(1)= 2