Врезультате измерения четырех сторон и одной из диагоналей некоторого четырехугольника получились числа 2 4 10 11,5 15. чему равна длина измеряемой диагонали?
Четырехугольник, в котором провели диагональ разбивается на два треугольника с общей стороной. Необходимо, чтобы для длин сторон каждого из этих треугольников выполнялось неравенство треугольника (a+b>c, где a,b,c - длины сторон треугольника). Посмотрим, какие длины сторон могут быть у треугольника, если одна из его сторон равна 15. 15<11.5+10 - может быть 10, 11.5, 15 15<11.5+4 - может быть 4, 11.5, 15 15>11.5+2 - такого набора длин сторон быть не может 15>10+4 - такого набора длин сторон быть не может 15>10+2 - такого набора длин сторон быть не может
Рассмотрим первый вариант. На второй треугольник остаются длины 2, 4 и одна из длин сторон первого треугольника, а этого быть не может (2+4<10<11.5<15)
Теперь второй вариант: Остаются 2 и 10. 2+4<10 2+10>11.5 - единственный подходящий вариант. 2+10<15
Диагональ входит в оба треугольника, а значит ее длина 11.5
Обозначим все числа, начиная с того, что стоит в верхнем кружкке, по часовой стрелке, как и Число, которое стоит в центре обозначим, как
Равенство всех пяти сумм чисел, стоящих в вершинах треугольников, выражается уравнениями:
Заметим, что во всех суммах, помимо прочих (что можно легко понять и просто из рисунка) присутствует одно и то же число
Так что это число может быть совершенно произвольным: простым, натуральным, целым, дробным, иррациональным, да хоть комплексным... Это ничего не изменит, поскольку данное число входит во все суммы в единичном экземпляре.
Вычеркнем из вышеозначенных уравнений проанализированное число и рассмотрим уравнения в упрощённом варианте:
Из первого равенста следует, что:
Из третьего равенста следует, что:
Поскольку: то:
Из второго равенста следует, что:
Таким образом, все «вершинные» числа должны быть равны между собой, а центральное при этом может быть каким угодно.
Значит на рисунке может оказаться одно или два различных числа. Максимум : 2 .
История возникновения вязания продолжает волновать умы исследователей, поскольку она не вполне ясна по сей день. Вязаные изделия недолговечны, и самые древние экспонаты, по-видимому, не сохранились. Поэтому разные историки рукоделия относят начало истории возникновения вязания к разным эпохам.
Самые древние находки относятся приблизительно к 19 веку до нашей эры – это значит, что вязание возникло около четырех тысячелетий назад! Трудно сказать, что появилось раньше – вязание одежды спицами или изготовление вязаных изделий крючком; вполне вероятно, что первые мастера или мастерицывязали вообще без инструментов – на пальцах.
Вязание одежды спицами
Место, к которому вероятнее всего относят начало истории возникновения вязания, – Египет. Именно в египетских гробницах найдены древние сохранившиеся вязаные вещи: детская туфелька, носок с вывязанным отдельно большим пальцем – для обуви с ремешком между пальцами. По одной из версий, в Европу вязание пришло именно из Египта.
Посмотрим, какие длины сторон могут быть у треугольника, если одна из его сторон равна 15.
15<11.5+10 - может быть 10, 11.5, 15
15<11.5+4 - может быть 4, 11.5, 15
15>11.5+2 - такого набора длин сторон быть не может
15>10+4 - такого набора длин сторон быть не может
15>10+2 - такого набора длин сторон быть не может
Рассмотрим первый вариант. На второй треугольник остаются длины 2, 4 и одна из длин сторон первого треугольника, а этого быть не может (2+4<10<11.5<15)
Теперь второй вариант:
Остаются 2 и 10.
2+4<10
2+10>11.5 - единственный подходящий вариант.
2+10<15
Диагональ входит в оба треугольника, а значит ее длина 11.5