Математическое ожидание случайной величины Х, имеющей гипергеометрическое распределение, и ее дисперсия равны:
ПРИМЕР №1. В урне 2 белых и 3 черных шара. Шары наудачу достают из урны без возвращения до тех пор, пока не появится белый шар. Как только это произойдет, процесс прекращается. Составить таблицу распределения случайной величины X – числа произведенных опытов, найти F(x), P(X ≤ 2), M(X), D(X).·
Решение: Обозначим через А – появление белого шара. Опыт может быть проведен только один раз, если белый шар появится сразу:. Если же в первый раз белый шар не появился, а появился при втором извлечении, то X=2. Вероятность такого события равна . Аналогично: , , . Запишем данные в таблицу:
X 1 2 3 4
P 0,4 0,3 0,2 0,1
НайдемF(x):
Найдем P(X ≤ 2) = P(X = 1 или X = 2) = 0,4 + 0,3 = 0,7
M(X) = 1 · 0,4 + 2 · 0,3 +3 · 0,2 + 4 · 0,1 = 2.
D(X) = (1-2)2 · 0,4 + (2-2)2 · 0,3 +(3-2)2 · 0,2 + (4-2)2 · 0,1 = 1
Пошаговое объяснение:
Для решения задачи сперва необходимо составить уравнение, в котором количество детей которые присутствовали на елке запишем как неизвестное число х.
в таком случае в каждом из подарков было 123 / х апельсинов, и 82 / х яблок.
Подставляем вместо неизвестного числа х, наименьшее кратное число, результатом которого будет целое число.
Получим:
82 / 2 = 41 ребенок.
123 / 41 = 3 апельсина
ответ.
На елке присутствовал 41 ребенок.
В каждом из подарков было по 3 апельсина и по 2 яблока.
Пошаговое объяснение:
-сместить на 3 вправо
-опустить на 1 единицу вниз
2. прямая y=x
- участок х<0 переносим симметрично на вверх
-на 1 единицу влево
- на 2 единицы вниз