4а^2 * (tg альфа) * (√ (1 - tg^2 альфа)
Пошаговое объяснение:
1) В полученном прямоугольном треугольнике диагональ призмы является гипотенузой, а диагональ боковой грани и сторона квадрата, который лежит в основании, - катетами.
2) Выражаем катет, являющийся стороной квадрата (обозначим его в), через а:
катет равен другому катету, умноженному на тангенс угла, противолежащего этому катету:
в = а * tg альфа.
3) Теперь в боковой грани находим высоту (обозначим её с):
с^2 (квадрат катета) = a^2 (квадрат гипотенузы) - (а * tg альфа)^2 (квадрат другого катета) ; отсюда c = a √ (1 - tg^2 альфа) .
4) Находим площадь боковой поверхности призмы (площадь одной грани умножить на 4):
4 * (а * tg альфа) * (a √ (1 - tg^2 альфа)) = 4а^2 * (tg альфа) * (√ (1 - tg^2 альфа)
4а^2 * (tg альфа) * (√ (1 - tg^2 альфа)
Пошаговое объяснение:
1) В полученном прямоугольном треугольнике диагональ призмы является гипотенузой, а диагональ боковой грани и сторона квадрата, который лежит в основании, - катетами.
2) Выражаем катет, являющийся стороной квадрата (обозначим его в), через а:
катет равен другому катету, умноженному на тангенс угла, противолежащего этому катету:
в = а * tg альфа.
3) Теперь в боковой грани находим высоту (обозначим её с):
с^2 (квадрат катета) = a^2 (квадрат гипотенузы) - (а * tg альфа)^2 (квадрат другого катета) ; отсюда c = a √ (1 - tg^2 альфа) .
4) Находим площадь боковой поверхности призмы (площадь одной грани умножить на 4):
4 * (а * tg альфа) * (a √ (1 - tg^2 альфа)) = 4а^2 * (tg альфа) * (√ (1 - tg^2 альфа)
1. Налить из бочки в бидон 9л. В бочке остался 1л.
Из бидона налить в другой бидон 5 л.
Вылить эти 5л в бочку. В бочке 6л.
2. Заполнить бидон в 9л. Остаток 1л налить в бидон 5л.
Перелить в бочку из бидона 9л.
Перелить 1л из маленького бидона в большой.
Налить в маленький бидон 5л и вылить в большой бидон. Получили 6л.