Обозначим катеты за a = 9 см, b = 12 см , гипотенузу за c, высоту за h, проекции катетов на гипотенузу за ca и ba.
Исходя из т. Пифагора, следует:
Найдет площадь прямоугольного треугольника:
Воспользуемся формулой площади треугольника через высоту и выразим из нее высоту:
Проекции катетов будут равны:
или
—————————————————————————————
Высоту и проекции катетов также можно найти через пропорциональные отрезки в прямоугольном треугольнике:
– высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу:
– катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу:
—————————————————————————————
ответ: гипотенуза равна 15 см, высота — 7,2 см, проекции катетов — 5,4 см и 9,6 см.
Пошаговое объяснение:
5/6 = 2х/3 4/9 = 8х/45 5х/12 = 2/3
2х * 6 = 3 * 5 8х * 9 = 45 * 4 5х * 3 = 12 * 2
12х = 15 72х = 180 15х = 24
х = 15 : 12 х = 180 : 72 х = 24 : 15
х = 1,25 х = 2,5 х = 1,6
6/7 = 10х/21 8/9 = 4х/27 27/5х = 9/16
10х * 7 = 21 * 6 4х * 9 = 27 * 8 5х * 9 = 27 * 16
70х = 126 36х = 216 45х = 432
х = 126 : 70 х = 216 : 36 х = 432 : 45
х = 1,8 х = 6 х = 9,6