1) Высота пирамиды равна Н = m*sin β.
2) Радиус описанной окружности равен проекции бокового ребра на основание: R = m*cos β.
3) Сторона a основания равна высоте h основания, делённой на косинус 30 градусов.
h = R*(3/2) = (m*cos β)*(3/2) = 3m*cosβ/2.
a = (3m*cosβ/2)/(√3/2) = √3m*cos β.
4) Площадь основания So = a²√3/4 = 3√3m²cos²β/4.
5) Радиус вписанной окружности равен половине радиуса описанной окружности: r = R/2 = m*cos β/2.
6) Апофема А (высота боковой грани) равна:
А = √(r² + H²) = √((m²*cos² β/4) + m²*sin² β) = (m/2)√(cos² β + 4sin² β).
Обозначим искомые числа ХУ.
По условию без последней цифры оно в 14 раз меньше, т.е. верно равенство ХУ/14 = Х; ⇒ ХУ = 14Х;
Представим ХУ в виде суммы разрядных слагаемых:
10Х + У = 14Х; У = 4Х;
Поскольку У - цифра, то верно неравенство: У ≤ 9; ⇒ 4Х ≤ 9; Х ≤ 9:4; Х ≤ 2ц1/4, причем Х - целое число.
Отсюда видно, что Х может быть только 1 или 2, тогда: У - 4Х при Х = 1 У = 4 и ХУ = 14;
при Х = 2 У = 8 и ХУ = 28;
ответ: Двухзначные числа, которые уменьшаются в 14 раз, если зачеркнуть их последнюю цифру, это 14 и 28
Проверка: 14:14=1 ; 28:14=2
36*1/60=0,6км=600м