Возводить в натуральную степень n, если она достаточно велика, комплексные числа проще всего в тригонометрической форме, то есть если число z=a+bi задано в алгебраической форме, то его изначально надо записать в тригонометрической.
Пусть число z=|z|(cosϕ+isinϕ), тогда умножая его само на себя n раз (что эквивалентно тому, что мы его возводим в степень n), получим:
zn=(|z|(cosϕ+isinϕ))n=|z|n(cosnϕ+isinnϕ)
Таким образом, модуль степени комплексного числа равен той же степени модуля основания, а аргумент равен аргументу основания, умноженному на показатель степени.
Если |z|=1, то получаем, что
zn=(cosϕ+isinϕ)n=cosnϕ+isinnϕ
Данная формула называется формулой Муавра (Абрахам де Муавр (1667 - 1754) - английский математик).
Пример
Задание. Найти z20, если z=12+3√2i
Решение. Вначале запишем заданное комплексное число в тригонометрической форме, для этого вычислим его модуль и аргумент:
|z|=∣∣12+3√2i∣∣=(12)2+(3√2)2‾‾‾‾‾‾‾‾‾‾‾‾‾‾√=14+34‾‾‾‾‾‾√=44‾‾√=1
argz=arg(12+3√2i)=arctg3√212=arctg3‾√=π3
Тогда
z=1⋅(cosπ3+isinπ3)=cosπ3+isinπ3
А отсюда, согласно формуле, имеем:
z20=(cosπ3+isinπ3)20=cos(20⋅π3)+isin(20⋅π3)=
=cos20π3+isin20π3=cos21π−π3+isin21π−π3=
=cos(7π−π3)+isin(7π−π3)=cos(π−π3)+isin(π−π3)=
=−cosπ3+isinπ3=−12+i⋅3√2=−12+3√2i
ответ. z20=−12+3√2i
Читать дальше: извлечения корня из комплексного числа.
Слишком сложно?
Возведение комплексного числа в натуральную степень не по зубам? Тебе ответит эксперт через 10 минут!
Опиши задание
Пошаговое объяснение:
Відповідь:Основанием прямоугольного параллелепипеда является параллелограмм со сторонами 3 м и 5 м и углом между ними 60º. Площадь большего диагонального сечения равна 63 м². Найдите площадь боковой поверхности параллелепипеда.
Решение.
Найдем площадь боковой поверхности. Нам известна площадь большего диагонального сечения. Чтобы найти площадь диагонального сечения нужно умножить высоту прямоугольного параллелепипеда на диагональ основания. Найдём диагональ основания по теореме косинусов
c²=a²+b²-2ab*cos(180-α)
c²=3²+5²-2*3*5*cos(180-60)
c²=9+25-30*cos120
c²=34-30*()
c²=34+15
c²=49
c=7 (м) -диагональ основания
Значит высота прямоугольного параллелепипеда равна
h=63:7=9 м
Значит площадь боковой поверхности равна
S=2*(ah+bh)=2*(3*9+5*9)=2*(27+45)=2*72=144 м²
2) - 19,8 + 5 4/5 = - 19,8 + 5,8 = - 14
3) - 4/5 + 1,8 = - 0,8 + 1,8 = 1,8 - 0,8 = 1
4) 12,75 + (-12 3/4) = 12,75 - 12,75 = 0
5) - 5,7 + 4 3/10 = - 5,7 + 4,3 = - 1,4
Пояснения:
4/5 = 8/10 = 0,8 - доп.множ. 2
3/4 = 75/100 = 0,75 - доп.множ. 25