Верно рассуждение 1
Пошаговое объяснение:
Рассуждение 1 верно: действительно, есть всего 8 возможных вариантов, как поставить корабль. Если сделать 8 выстрелов, выбрав по одной клетке, входящей в каждый вариант, то хотя бы раз мы гарантированно попадем.
Рассуждение 2 неверно: разные положения корабля пересекаются, поэтому одним выстрелом можно проверить сразу несколько возможных положений.
Рассуждение 3 неверно: показано, что если из последовательности выстрелов по диагонали убрать какой-то выстрел, то можно поставить корабль так, чтобы в него не попали. Из этого следует, что если стрелять по диагонали, то нужно сделать 4 выстрела, но не следует, что если стрелять как-то еще, то по-прежнему нужны все 4 выстрела.
На саму задачу, конечно, ответ 4: достаточно выстрелить на все клетки по диагонали, если корабль стоит в i-й горизонтали или i-й вертикали, то на i-м выстреле мы его подобьем. Меньшим количеством выстрелов обойтись нельзя: рассмотрим все вертикали, в которых стоят клетки, по которым выстрелили. Если выстрелов меньше 4, то и вертикалей меньше 4, можно выбрать вертикаль, по которой еще не стреляли, и поставить туда корабль.
S=1+2+3+...+2017=2035153.
Хотел посмотреть на что она вообще делится. В общем в 2, 3, 4 и т. д. ряда не удастся разбить. НО...
При вычислении данной суммы по формуле для суммы арифметической прогрессии:
Замечаем такую штуку
Т.е. напрашивается мысль, что можно разбить на 1009 полосок длиной в 2017 и составить прямоугольник 1009x2017.
И действительно одна полоска у нас уже 2017, а остальные составим так:
2016+1=2017
2015+2=2017
2014+3=2017
и т.д.
Всего таких составных полос буде 2016/2=1008.
И одна 2017 цельная
Итак прямоугольник в 2017x1009 можно составить.
Его площадь будет равна 2035153