М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
schooll13
schooll13
11.09.2020 08:15 •  Математика

Что такое действие с рациовальные числами?

👇
Ответ:
risha5239
risha5239
11.09.2020
Сложение нуля с другим рациональным числом

Сформулируем правило сложения рационального числа с нулем: прибавление нуля к любому числу дает это же число. С букв это правило записывается так: a+0=a для любого рационального a, а в силу переместительного свойства сложения рациональных чисел также справедливо равенство 0+a=a.

Сложение противоположных рациональных чисел

Теперь установим, как проводится сложение противоположных рациональных чисел: сумма противоположных чисел равна нулю. В буквенном виде это правило имеет такую запись: a+(−a)=0

Сложение положительных рациональных чисел

Любое положительное рациональное число можно записать в виде обыкновенной дроби. Таким образом, для сложения положительных рациональных чисел нужно знать, как рациональные числа приводятся к виду обыкновенных дробей, и как выполняется сложение обыкновенных дробей

Если складываемые рациональные числа можно записать как конечные десятичные дроби, либо как смешанные числа, то можно выполнить сложение десятичных дробей и сложение смешанных чиселсоответственно.

Сложение рациональных чисел с разными знаками

Для сложения рациональных чисел с разными знакамииспользуется правило сложения чисел с разными знаками: из большего модуля слагаемых надо вычесть меньший, и перед полученным числом поставить знак того числа, модуль которого больше.

Сложение отрицательных рациональных чисел

Сложение отрицательных рациональных чиселпроводится по правилу сложения отрицательных чисел: складываются модули слагаемых и перед полученным числом ставится знак минус.

Приведем пример сложения отрицательных рациональных чисел.

Вычитание рациональных чисел

Переходим к рассмотрению следующего действия над рациональными числами – вычитания. Вычитание является действием, обратным к сложению. То есть, вычитание – это нахождение неизвестного слагаемого по сумме и известному слагаемому. Это также означает, что из равенства c+b=a следует, что a−b=с и a−c=b, и наоборот, из равенств a−b=с и a−c=b следует, что c+b=a.

Вычитание из большего положительного рационального числа меньшего числа сводится либо к вычитанию обыкновенных дробей, либо, если это удобно, к вычитанию десятичных дробей

В остальных случаях вычитание рациональных чисел заменяется сложением: к уменьшаемому прибавляется число, противоположное вычитаемому. То есть, a−b=a+(−b).

Это равенство доказывается на основании свойств действий с рациональными числами. Они позволяют записать такую цепочку равенств: (a+(−b))+b=a+((−b)+b)=a+0=a, откуда в силу смысла вычитания следует, что сумма вида a+(−b) является разностью чисел 

Умножение положительных рациональных чисел
В общем случае умножение положительных рациональных чисел можно свести к умножению обыкновенных дробей. Для этого множители нужно представить в виде обыкновенных дробей, если они сразу не являются
Иногда удобно работать с конечными десятичными дробями, не выполняя переход
В частном случае умножение положительных рациональных чисел может собой представлять умножение натуральных чисел, умножение натурального числа на обыкновенную дробь или умножение натурального числа на десятичную дробь.
Умножение рациональных чисел с разными знаками
Для умножения рациональных чисел с разными знакамиприменяется правило умножения чисел с разными знаками: надо умножить модули множителей и перед полученным числом поставить знак минус. Это правило позволяет от умножения рациональных чисел с разными знаками перейти к умножению положительных рациональных чисел, с которым мы разобрались в предыдущем пунк
Умножение отрицательных рациональных чисел
Умножение отрицательных рациональных чиселсводится к умножению положительных чисел. При этом применяется следующее правило умножения отрицательных чисел: нужно перемножить модули множителей.
Деление рациональных чисел
Деление представляет собой действие, обратное умножению. Иными словами, деление – это нахождение неизвестного множителя по известному произведению и другому множителю. То есть, смысл деления таков: из равенства b·c=a следует, что a:b=c и a:c=b, и, наоборот, из равенств a:b=c и a:c=b следует, что b·c=a.
На множестве рациональных чисел деление сложно считать самостоятельным действием, так как оно выполняется посредством умножения. Об этом свидетельствует следующее правило деления рациональных чисел: разделить число a на отличное от нуля число b – это все равно, что умножить делимое a на число, обратное делителю. То есть, на множестве рациональных чисел a:b=a·b−1.
Доказать это равенство не составляет труда. Действительно, в силу свойств действий с рациональными числами справедливы равенства (a·b−1)·b=a·(b−1·b)=a·1=a, которые доказывают равенство a:b=a·b−1.
Итак, деление рационального числа на отличное от нуля рациональное число сводится к умножению рациональных чисел.
4,4(25 оценок)
Открыть все ответы
Ответ:
петя1023
петя1023
11.09.2020
Основоположник христианского учения - Иисус Христос. Он родился в Иудее, во времена царствования римского императора Августа. Родители его матери Марии, Иоаким и Анна, дожили бездетными до глубокой старости и только тогда родили дочь. Этим иудейская и христианская религии подчеркивали, что поздно рожденное дитя уже не плод чувственной похоти, а настоящий дар Неба. Земной отец Иисуса Иосиф и его мать Мария к моменту их жили в городе Назарете и принадлежали к клану ремесленников. Оставшись сиротой, Мария обручилась с Иосифом. После обряда она имела благое видение. Благовещенье, ситуация зачатия Иисуса и появление Его на свет включают элементы сверхъестественного.
4,7(70 оценок)
Ответ:
lox53
lox53
11.09.2020
Рассмотрим по очереди варианты от А до Д.
А изображённый на рисунке.

Б - теперь у нас есть блок из долек (отмечен красным на рисунке) и число это число выбора его места в шоколадке. В блок не входят 12-3=9 долек. Значит есть 9+1=10 позиций для блока (здесь +1 потому что можно ставить блок и перед первой долькой). Итак, в Б

В - теперь два блока (отметил их зеленым). 6 долек не в блоках, 6+1=7 позиций для 1-го блоков.А для второго уже 8 позиций (ибо первый поставленный блок - это как бы новая долька для второго). Но блоки можно переставлять друг с другом , поэтому делим на 2!=2. Итак для В.

Г - три блока (желтые). 3 дольки не в блоках, 4 позиций для первого блока, 5 для второго, 6 для третьего. Число для Г = 4*5*6/3!=20*6/6=20.

Д - все дольки в блоках - один

Складываем все

Сколько имеется разломать шоколадку размера 3 на 12 на дольки размера 1 на 3?
4,7(93 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ