М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nickolaimatviip0c00u
nickolaimatviip0c00u
16.04.2020 01:48 •  Математика

Периметр и площадь прямоугольника со сторонами 2см и 4см

👇
Ответ:
RamzesCake
RamzesCake
16.04.2020
Периметр
2+2+4+4=12см

Площадь
2×4=8см^2
4,5(36 оценок)
Ответ:
Andreykins1
Andreykins1
16.04.2020
Периметр  2+2+4+4= 12см
Площадь   4*2=8 см2
4,8(34 оценок)
Открыть все ответы
Ответ:
moda712
moda712
16.04.2020
Вычислить площадь треугольника, ограниченного осями координат и касательной к графику функции у=х/(2х — 1) в точке с абсциссой х₀=1.

Решение:
Найдем уравнение касательной к графику функции
у=х/(2х — 1) в точке с абсциссой х₀=1.
Уравнение касательной записывается по формуле
 
                                    y(x)=y'(x₀)(x-x₀)+y(x₀)

Найдем значение y(x₀)

y(x₀) = х₀/(2х₀ — 1)
Так как х₀=1, то
y(1) = 1/(2*1 — 1)=1
Найдем производную функции
y'=( \frac{x}{2x-1} )'=\frac{x'(2x-1)-x(2x-1)'}{(2x-1)^2}=\frac{2x-1-2x}{(2x-1)^2}=-\frac{1}{(2x-1)^2}
Значение производной функции в точке x₀=1
y'(1)=-1/(2*1-1)²=-1
Запишем уравнение касательной

                                   y =-(x-1)+1=-x+2
Данная прямая имеет две точки пересечения с осями координат
При х=0 у=2 и х=2  у=0
(0;2) и (2;0)
Найдем площадь треугольника через интеграл так как площадь фигуры ограничена прямой касательной с пределами интегрирования от х₁=0 до х₂=2
S_{TP}= \int\limits^2_0 {(-x+2)} \, dx=(- \frac{x^2}{2}+2x) \left[\begin{array}{ccc}2\\0\end{array}\right]= - \frac{2^2}{2}+2*2=2

Или найти площадь прямоугольного треугольника( так как оси координат имеют угол 90⁰)  с катетами равными 2
S=(a*b)/2=2*2/2=2

ответ: S=2
4,7(4 оценок)
Ответ:
Aidana130234
Aidana130234
16.04.2020
Пусть А - начало координат
Ось X -AB
Ось Y -AD
Ось Z- AA1
Координаты интересующих точек
В(1;0;0)
D1(0;1;1)
C(1;1;0)
B1(1;0;1)
C1(1;;1;1)
А1(0;0;1)
Направляющий вектор BD1 (-1;1;1)
Уравнение плоскости АСВ1
аx+by+cz=0 проходит через 0
Подставляем координаты точек
а+b=0
a+c=0
Пусть а= -1 тогда b=1 c=1
Уравнение
-x+y+z=0
Угол между BD1 и плоскостью
sin a = | -1*-1+1*1+1*1|/(√3*√3)= 1
a = 90 что и требовалось доказать

Уравнение плоскости АD1C1
a1x+b1y+c1z=0
b1+c1=0
a1+b1+c1=0
Пусть b1=1 тогда с1=-1 а=0
y-z=0

Уравнение плоскости А1D1C
a2x+b2y+c2z+d=0
c2+d=0
b2+c2+d=0
a2+b2+d=0
Пусть d=1 тогда с2= -1 b2=0 a2= -1
-x-z+1=0

cos b между плоскостями = 1/(√2*√2)=1/2
Угол b= 60 градусов
4,6(78 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ