На основании определения функции каждому значению аргумента х из области определения R ( все действительные числа ) соответствует единственное значение функции y , равное x 2.
Например, при х = 3 значение функции y = 3 2 = 9 , а при х = –2 значение функции y = (–2) 2 = 4 .
Изобрази график функции y = x 2 . Для этого присвой аргументу х несколько значений, вычисли соответствующие значения функции и внеси их в таблицу.
Если: x = –3 , x = –2 , x = –1 , x = 0 , x = 1 , x = 2 , x = 3 ,
то: y = 9 , y = 4 , y = 1 , y = 0 , y = 1 , y = 4 , y = 9 .
Нанеси точки с вычисленными координатами (x ; y) на плоскость и соедини их плавной непрерывной кривой. Эта кривая, называющаяся параболой, и есть график исследуемой тобой функции.
На графике видно, что ось OY делит параболу на симметричные левую и правую части (ветви параболы), в точке с координатами (0; 0) (вершине параболы) значение функции x 2 — наименьшее. Наибольшего значения функция не имеет. Вершина параболы — это точка пересечения графика с осью симметрии OY .
На участке графика при x ∈ (– ∞; 0 ] функция убывает, а при x ∈ [ 0; + ∞) возрастает.
Функция y = x 2 является частным случаем квадратичной функции.
Рассмотрим ещё несколько её вариантов. Например, y = – x 2 .
Графиком функции y = – x 2 также является парабола, но её ветви направлены вниз.
График функции y = x 2 + 3 — такая же парабола, но её вершина находится в точке с координатами (0; 3) .
1) Найти область определения функции; Ограничений нет - х ∈ R. 2) Исследовать функцию на непрерывность; Непрерывна, так как нет точек разрыва функции. 3) Определить, является ли данная функция четной, нечетной; f(-x) = 6/((-x)² + 3) = 6/(x² +3) = f(x). Функция чётная. 4) Найти интервалы функции и точки её экстремума ; Находим производную функции. y' = -12x/(x² + 3)². Приравняв её нулю (достаточно только числитель), имеем 1 корень: х = 0. Имеем 2 промежутка (-∞; 0) и (0; ∞). Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума. x = -1 0 1 y' = 0,75 0 -0,75. Отсюда получаем: Функция возрастает на промежутке (-∞; 0) и убывает на промежутке (0; ∞). Экстремум только один - это максимум в точке х = 0. 5) Найти интервалы выпуклости и вогнутости и точки перегиба графика функции; Находим вторую производную. y'' = 36(x² - 1)/(x² + 3)³. Приравняв нулю, имеем 2 точки перегиба х = 1 и х = -1. 6) Найти асимптоты графика функции. Асимптота есть одна у = 0 (ось Ох). График функции, таблица точек для его построения приведены в приложении.