Предположим, что такие числа существуют. Корни всех четырех уравнений имеют вид x1 = (-b - √D)2a и x2 = (-b +√D)/2a. Вычтем из одного корня второй: x2 - x1 = (-b+√D+b+√D)/2a = 2√D/2a = √D/a. По предположению, т. к. оба корня целые, √D/a также целое число. Дискриминант двух уравнений ax^2+bx+c и ax^2-bx+c равен D1 = b^2-4ac, а двух других уравнений ax^2+bx-c и ax^2-bx-c равен D2 = b^2 + 4ac. Положим √D1 = k*a и √D2 = m*a, где k и m - натуральные. Тогда имеем D1 = k^2a^2, а D2 = m^2a^2. Составим сумму четырех дискриминантов уравнений: 2D1 + 2D2 = 2(b^2-4ac) + 2(b^2+4ac) = 2b^2 + 2b^2 = 4b^2 = 2k^2a^2 + 2m^2a^2 = 2a^2(k^2 + m^2) или 2b^2 = a^2(k^2 + m^2). Отсюда видно, что условием является a = b и k = m = 1. Предположим, что это так. Тогда b^2 - 4ac = k^2a^2 = > b^2 - 4bc = b^2 => -4bc = 0 => c = 0, но это невозможно, поскольку с - натуральное. Точно так же, если b^2 + 4ac = m^2a^2 = > b^2 -+ 4bc = b^2 => 4bc = 0 => c = 0. Следовательно, приходим к противоречию и таких чисел не существует.
Всего 7 велосипедов и 20 колес. Числа до 20 кратные 3 (трехколесные велосипеды): 3,9,12,15,18. Числа до 20 кратные 2 (двухколесные велосипеды): 2, 4, 6, 8, 10, 12, 14, 16, 18. Найдем какие числа (трехколесные + двухколесные велосипеды) дадут в сумме 20 колес (отбросим сразу 3, 9, 15, поскольку 20-3=17 (не кратное 2), 20-9=11 (не кратное 2); 20-15=5 (не кратное 2)).
20=12(по 3 колеса) + 8(по 2колеса) = 12:3+8:2=4+4=8 велосипедов - не подходит. 20=18(по 3 колеса)+2(по два колеса) = 18÷3+2÷2=6+1= 7 велосипедов. Значит, двухколесных был один велосипед и трехколесных шесть велосипедов. ответ: один ребёнок приехал на двухколесном велосипеде.
И трехколесные и двухколесные велосипеды имеют по 2 колеса. 2×7=14 колес по 2 шт. у всех велосипедов. Для трехколесных дополнительно остается: 20-14=6 колес 6 колес нужно распределить по одному среди трехколесных велосипедов, поскольку два колеса мы уже учли: 6÷1=6 - трехколесных велосипедов, имеющих 6×3=18 колес 20-18=2 колеса - у одного двухколесного велосипеда. ответ: один ребёнок приехал на двухколесном велосипеде.
Хе... Сама раньше плохо понимала такие задачи. Итак, сначала на мало узнать производительность этих двух мастерских. Для этого следует делить. 18000÷3 = 6000 (к.) - производительность 1ой мастерской в день. 18000 ÷ 6 = 3000 (к.) - производительность 2ой мастерскоц в день. Теперь узнаем, с какой же скоростью будут работать эти мастерские вместе. 6000+3000 = 9000 (к) - Общая производительность. А теперь узнаем, сколько же нам надо дней, если в каждый из них будут производиться 9000 книг. 18000÷9000 = 2 (дня) ответ: потребуется 2 дня.
Предположим, что такие числа существуют. Корни всех четырех уравнений имеют вид x1 = (-b - √D)2a и x2 = (-b +√D)/2a. Вычтем из одного корня второй: x2 - x1 = (-b+√D+b+√D)/2a = 2√D/2a = √D/a. По предположению, т. к. оба корня целые, √D/a также целое число. Дискриминант двух уравнений ax^2+bx+c и ax^2-bx+c равен D1 = b^2-4ac, а двух других уравнений ax^2+bx-c и ax^2-bx-c равен D2 = b^2 + 4ac. Положим √D1 = k*a и √D2 = m*a, где k и m - натуральные. Тогда имеем D1 = k^2a^2, а D2 = m^2a^2. Составим сумму четырех дискриминантов уравнений: 2D1 + 2D2 = 2(b^2-4ac) + 2(b^2+4ac) = 2b^2 + 2b^2 = 4b^2 = 2k^2a^2 + 2m^2a^2 = 2a^2(k^2 + m^2) или 2b^2 = a^2(k^2 + m^2). Отсюда видно, что условием является a = b и k = m = 1. Предположим, что это так. Тогда b^2 - 4ac = k^2a^2 = > b^2 - 4bc = b^2 => -4bc = 0 => c = 0, но это невозможно, поскольку с - натуральное. Точно так же, если b^2 + 4ac = m^2a^2 = > b^2 -+ 4bc = b^2 => 4bc = 0 => c = 0. Следовательно, приходим к противоречию и таких чисел не существует.
ответ: Не существует.