М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
JHope23
JHope23
10.01.2020 07:17 •  Математика

1. найдите значение в
а) 17,55 : 3,9 – 0,74 - 0,8;
2. найдите значение
х2 + 5: x — 0,6, если х = 1,4.
3. решите уравнен​

👇
Ответ:

Задание 1

17,55 : 3,9 - 0,74-0,8= 2,96

Задание 2

1,4*2+5=7,8

1,4-0,6=0,8

4,5(32 оценок)
Открыть все ответы
Ответ:
LoveSmile78900987
LoveSmile78900987
10.01.2020
Можно найти несколько пределов данной числовой последовательности. Для этого нужно посмотреть, что произойдет с ней при стремлении к бесконечности с разными знаками, и в "опасных" точках. 

"Опасные" точки сразу видны, это:
1) n=- \frac{2}{7} - знаменатель обращается в 0.
2) n=0 - по обычаю проверяется эта точка.

Эта числовая последовательность может быть сведена ко второму замечательному пределу для нахождения пределов:
lim (1+ \frac{1}{x})^x=e (при x→∞)

Выделяем целую часть в дроби:

\frac{7n+3}{7n+2 } = 1 + \frac{1}{7n+2 }

Используем свойство 2-го замечательного предела, но добавляем степени:

lim (1 + \frac{1}{7n+2 })^{3n-4}

lim (((1 + \frac{1}{7n+2 })^{7n+2})^{ \frac{1}{7n+2}})^{3n-4} = e^{\frac{1}{7n+2} * 3n-4} (при n→∞)

То есть мы степень не меняли: домножили и разделили.

Посчитаем, что получилось:

e^{\frac{1}{7n+2} * 3n-4} = e^{ \frac{3n-4}{7n+2}} = e^{ \frac{n*(3-\frac{4}{n}) }{n*(7+\frac{2}{n})} } = e^{ \frac{3}{7} } (при n→∞)

Итак: 
1) n→+∞ предел равен e^{ \frac{3}{7} }
2) n→-∞  предел равен e^{ \frac{3}{7} }

3) n→0 предел равен:
lim ( \frac{7n+3}{7n+2})^{3n-4} = (\frac{3}{2})^{-4} = (\frac{2}{3})^{4} = \frac{16}{81}

4) n- \frac{2}{7}
По правило Лопиталя имеем: 0 (не расписывал, поскольку это очень много и неважно в данном случае, нас это не интересует).

Мы видим, что при стремлении к бесконечности с разными знаками, мы имеем конечное число. В "опасных" точках, скачков нет.

Используя свойства показательной функции, находим, что график делает скачок в некотором интервале (основание должно быть неотрицательным числом, если же взять число из интервала - \frac{3}{7} \leq x \leq - \frac{2}{7} - мы получаем отрицательное основание).

Можно говорить, что данная числовая последовательность является неограниченной (из-за этого интервала).

Если же этого не учитывать, то данная числовая последовательность является ограниченной (это очень грубо).

Найдите предел числовой последовательности. укажите, является ли заданная числовая последовательност
4,4(95 оценок)
Ответ:
ayazhka2
ayazhka2
10.01.2020
Боковая сторона — а, отрезки, на которые её делит окружность — а1 и а2., радиус вписанной окружности — р, основания — в1 и в2. достраиваем треугольники, образованные центром окружности, углами трапеции и точками касания, получаем 8 прямоугольных треугольников, из которых два — с катетами р и а1, два — с катетами р и а2, два — с катетами р и в1/2, и два — с катетами ри в2/2. из теоремы пифагора для треугольников с общими гипотенузами (отрезки от центра окружности к вершинам) имеем р^2 + а1^2 = р^2 + в1^2/4 р^2 + а2^2 = р^2 + в2^2/4, отсюда в1 = 2*а1 в2 = 2*а2 ищем высоту, для этого строим высоту из верхней вершины. эта высота отсекает на нижнем основании отрезок х. поскольку трапеция равнобочная, х = (в2-в1)/2 = а2-а1. из теоремы пифагора имеем н^2 = (а1 + а2)^2 - (а2 -а1)^2 = 4а1*а2 с = (в1 + в2)*н/2 = 2*(а1 + а2)*квкор (а1*а2) (квкор — квадратный корень) . с = 2 * 26 * кв кор (8*18) = 2*26*12 = 624.
4,7(87 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ