ответ: через 4 года возраст дедушки будет равен сумме возрастов его сына и внуков.
Пошаговое объяснение:
Перевод задачи на русский:
Дедушке 58 лет, его сыну 32 года, внукам 11 и 7 лет. Через сколько лет возраст дедушки будет равен сумме возрастов его сына и внуков?
Пусть дедушке будет 58+х лет, тогда сыну 32+х лет, а сумма возрастов внуков (11+х)+(7+х) лет. Составим и решим уравнение.
58+х=32+х+(11+х)+(7+х)
58+х=32+х+11+х+7+х
58+х=50+3х
х-3х=50-58
-2х=-8
х=4
по условию Деду 58+х лет = 58+4=62(года) - возраст Дедушки.
Проверим верность уравнения: так же по условию:
возраст сына составляет: 32+х=32+4=36(лет)
возраст внуков составляет: (11+х)+(7+х)=(11+4)+(7+4)=15+11=26
одному внуку - 15 лет; другому - 11 лет, сумма их возрастов - 26 лет
имеем: 36+26=62
62=62 Верно!
В ∆АВС и АВМ общая высота.
Точка М делит основание АС на части 2х и 3х⇒
АС=5х
S ∆ АВМ=2/5 S ∆ ABC=85:5*2=34 (ед. площади)
В треугольниках АВМ и АКМ - высота из М на АВ - общая.
S ∆ AKM=1/5 S ∆ ABM=34:5=6,8(ед. площади)