47631, 47613, 47361, 47316, 47163, 47136, 46731, 46713, 46371, 46317, 46173, 46137, 43761, 43716, 43671, 43617, 43176, 43167, 41763, 41736, 41673, 41637, 41376, 41367, 37641, 37614, 37461, 37416, 37164, 37146, 36741, 36714, 36471, 36417, 36174, 36147, 34761, 34716, 34671, 34617, 34176, 34167, 31764, 31746, 31674, 31647, 31476, 31467, 17643, 17634, 17463, 17436, 17364, 17346, 16743, 16734, 16473, 16437, 16374, 16347, 14763, 14736, 14673, 14637, 14376, 14367, 13764, 13746, 13674, 13647, 13476, 13467.
А) Пусть произведение чисел n – 1, n, n + 1 является точной m-й степенью. Поскольку число n взаимно просто с числами n – 1 и n + 1, то любой простой делитель числа n входит в разложение числа (n – 1)n(n + 1) с таким же показателем, с каким он входит в разложение числа n, то есть он входит в разложение числа n в степени, кратной m. Поэтому n (а следовательно, и n²) является точной m-й степенью. Но и (n – 1)(n + 1) = n² – 1 также является m-й степенью натурального числа, как частное от деления чисел (n – 1)n(n + 1) и n, являющихся m-ми степенями. Таким образом, нами найдены два последовательных натуральных числа (n² и n² – 1), являющихся m-ми степенями. Ясно, что это невозможно. Противоречие.
б) Среди пяти подряд идущих чисел есть два чётных, одно из которых делится на 4. Поэтому в разложении произведения на простые множители число 2 встретится трижды. Значит, произведение делится на 3, 5 и 8, то есть и на их произведение 120.
Пошаговое объяснение:
А) не может