А) Если прямоугольник является квадратом, то его диагонали взаимно перпендикулярны и делят углы пополам. Это верное утверждение. Его называют теоремой Обратное Если диагонали прямоугольника взаимно перпендикулярны и делят углы пополам, то этот прямоугольник - квадрат Это верное утверждение. Это тоже теорема Противоположное Если прямоугольник не является квадратом, то его диагонали не взаимно перпендикулярны и не делят углы пополам. Теорема. Обратное противоположному Если диагонали прямоугольника не взаимно перпендикулярны и не делят углы пополам, то этот прямоугольник - не квадрат. Теорема.
2)Всякий параллелограмм с равными диагоналями есть прямоугольник или квадрат. Верное. Теорема Обратное Если параллелограмм является прямоугольником или квадратом, то его диагонали равны. Верное. Теорема. Противоположное Если в параллелограмме диагонали не равны, то этот параллелограмм не прямоугольник и не квадрат. Теорема. Противоположное обратному Если параллелограмм не является прямоугольником или квадратом, то его диагонали не равны. Теорема.
Дано: Трапеция ABCD. BC = 11, AD = 23. AB = CD. S = 136.
Решение: 1.) Проведем 2 высоты - DH и CT. Они равны, т.к. обе перпендикулярны одной стороне AD. Т.к. трапеция равнобедренная, угл A = углу D. Следовательно, прямоугольные треугольники ABH и CDT равны по катету и острому углу, а след. AH = TD. 2.) AH = TD по доказанному. Т.к. BC = HT, след AH = TD = (23 - 11)/2 = 6 3. ) Площадь трапеции = ((BC + AD)/2 )*h = ((23 + 11)/2)* h = 17*h (h - высота) 4. ) S = 17*h, а по условию S = 136. Составляем уравнение - 136 = 17*h, h = 8 5. ) Рассмотрим прямоугольный треугольник ABH. AH = 6 по доказанному. BH = 8 по доказанному. По теореме Пифагора AB^2 = BH^2 + AH^2. Составим уравнение, где X = AB. X^2 = 6^2 + 8^2. X^2 = 36 + 64. X^2 = 100. X = 10 Следовательно, боковая сторона трапеции = 10
Потом числа подставь.