(0;2]U[4;6)
Пошаговое объяснение:
ОДЗ:
{x > 0;
{6–x > 0 ⇒ x < 6
{(x4–12x3+36x2) > 0⇒ (x·(6–x))2 > 0 ⇒ x≠0; x≠6
ОДЗ: х∈(0;6)
при х∈(0;6):
log2(x4–12x3+36x2)=log2x2·(6–x)2=
log2(x·(6–x))2=2log2x·(6–x)=2log2x+2log2(6–x)
Неравенство принимает вид:
(2–log2x)·(log2(6–x)–2) ≥ 0
Применяем обобщенный метод интервалов
log2x=2 или log2(6–x)=2
x=4 или 6–х=4;х=2
При х=1
(2–log21)·(log2(6–1)–2)=2·(log25–log24) > 0
При х=3
(2–log23)·(log2(6–3)–2)=–(2–log23)2 < 0
При х=5
(2–log25)·(log2(6–5)–2)=(log24–log25)·(0–2) > 0
(0)__+__ [2]__–__[4]__+__ (6)
2
Пошаговое объяснение:
30 мин = 1/2 час 4 × 1/2 = 2 (км) ответ: за 30 мин пройдёт 2км 2ч 30мин = 120мин + 30мин= 150мин 150 ÷ 50 = 3 (рейса) ответ: за 2ч 30мин он сделает 3 рейса
1)1час=60мин. 2)60 относится к 30, как 4 относится к Х 3)30•4=120 4)120:60=2 Можно решить ещё проще: 30мин. это половина 1часа (60мин.), а скорость указана в "км/ч", значит из скорости (4) мы тоже берём половину