Наступила долгожданная перемена: февраль на календаре сменился первым весенним месяцем - мартом. а это значит, что пришёл конец снежным и суровым бурям, скоро можно будет забыть о морозах и порадоваться наступающей весне. улица ещё полна сугробов, но это ненадолго. робкие поначалу лучики солнца скоро войдут в полную силу и растопят снег. по улицам, звеня, побегут весёлые ручьи, предвестники пробуждения природы. очнётся ото сна лес, расправят свои ветви деревья. белое снежное покрывало, которым зима укрыла природу, исчезнет под жаркими солнечными лучами. дольше всего снег сохранится в низинах и оврагах, однако и туда рано или поздно доберётся солнышко. совсем немного времени пройдёт - а от зимы не останется и следа.вот уже и сейчас, в самом начале весны, из-под ставшего прозрачным снега, выглядывает чёрная земля. через некоторое время она проснётся окончательно. и вскоре оденет свой зелёный наряд, окончательно украсившись и приготовившись к встрече тепла. сейчас ещё пока что тихо, но в самом ближайшем времени из дальних тёплых стран на родину вернутся перелётные птицы. своим весёлым щебетом они огласят окрестности, тем самым приблизив и поторопив наступление весны.
Решение: 1) область определения d(y) : x≠2 2) множество значений функции е (х) : 3) проверим является ли функция периодической: y(x)=x^4/(4-2x) y(-x)=(-x)^4/(4-2(-x))=x^4/(4+x), так как у (х) ≠y(-x); y(-x)≠-y(x), то функция не является ни четной ни нечетной. 4) найдем нули функции: у=0; x^4/(4-2x)=0; x^4=0; x=0 график пересекает оси координат в точке (0; 0) 5) найдем промежутки возрастания и убывания функции, а так же точки экстремума: y'(x)=(4x³(4-2x)+2x^4)/(4-2x)²=(16x³-6x^4)/(4-2x)²; y'=0 (16x³-6x^4)/(4-2x)²=0 16x³-6x^4=0 x³(16-6x)=0 x1=0 x2=8/3 так как на промежутках (-∞; 0) (8/3; ∞) y'(x)< 0, то на этих промежутках функция убывает так как на промежутках (0; 2) и (2; 8/3) y(x)> 0, то на этих промежутках функция возрастает. в точке х=0 функция имеет минимум у (0)=0 в точке х=8/3 функция имеет максимум у (8/3)=-1024/27≈-37.9 6) найдем точки перегиба и промежутки выпуклости: y'=((16-24x³)(4-2x)²+4(4-2x)(16x-6x^4))/(4-2x)^4=(24x^4-96x³+32x+64)/(4-2x)³; y"=0 (24x^4-96x³+32x+64)/(4-2x)³=0 уравнение не имеет корней. следовательно: так как на промежутке (-∞; 2) y"> 0, тона этом промежутке график функции направлен выпуклостью вниз. так как на промежутке (2; ☆) y"< 0, то на этом промежутке график функции напрвлен выпуклостью вверх. 7) найдем асимптоты : а) вертикальные, для этого найдем доносторонние пределы в точке разрыва: lim (при х-> 2-0) (x^4/(4-2x)=+∞ lim (при х-> 2+0) (x^4/(4-2x)=-∞ так как односторонние пределы бесконечны, то в этой точке функция имеет разрыв второго рода и прямая х=2 является вертикальной асимптотой. б) наклонные y=kx+b k=lim (при х-> ∞)(y(x)/x)= lim (при х-> ∞)(x^4/(x(4-2x))=∞ наклонных асимптот функция не имеет. 8) все, строй график
2)234-174 =60