1
Избавься от ограничений
ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ
вероникасмс
04.09.2016
Математика
1 - 4 классы
+5 б.
ответ дан
задай множество перечислением: а) А-множество букв в слове крот б)В-множество однозначных чисел, меньших 5; в)С - множество двухместных чисел, кирпичных 10;г) D-множество трехзначных чисел,больших 603,но мегьших608.
1
СМОТРЕТЬ ОТВЕТ
Войди чтобы добавить комментарий
ответ, проверенный экспертом
3,2/5
6

xERISx
главный мозг
3 тыс. ответов
3.1 млн пользователей, получивших
Задай множество перечислением:
а) А - множество букв в слове крот
А = {к; р; о; т}
б) В - множество однозначных чисел, меньших 5
Если речь идёт о натуральных числах :
В = {1; 2; 3; 4}
Если речь идёт о целых числах :
В = {-9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2; 3; 4}
в) С - множество двузначных чисел, кратных 10
Если речь идёт о натуральных числах :
С = {10; 20; 30; 40; 50; 60; 70; 80; 90}
Если речь идёт о целых числах :
С = {0; 10; 20; 30; 40; 50; 60; 70; 80; 90}
г) D - множество трехзначных чисел,больших 603,но меньших 608
D = {604; 605; 606; 607}
0,003
Пошаговое объяснение:
Данную задачу будем решать по формуле:
Р(А) = m / n
Где Р(А) – вероятность события А, m – число благоприятствующих исходов этому событию, n – общее число всевозможных исходов.
Применим данную теорию к нашей задаче:
А – событие, при котором купленная сумка окажется без дефектов;
Р(А) – вероятность того, что купленная сумка окажется без дефектов.
Определим m и n:
m — число благоприятствующих этому событию исходов, то есть число исходов, когда купленная сумка окажется без дефектов. Это число равно количеству сумок без дефектов:
m =1356 – 5 = 1351
n – общее число всевозможных исходов, оно равно общему количеству сумок:
n = 1356
Осталось найти вероятность того, что купленная сумка окажется без дефектов:
Р(А) = 5 / 1356= 0,003
А) х=15*4/5=12
в) 3х/4=5/9-2
3/4х=5/9-18/9
3/4х=-13/9
х=-52/27
г) х=(13/4*1/2)/(11/6)=39/44