Пошаговое объяснение:
НОД (18; 21) = 3.
Как найти наибольший общий делитель для 18 и 21
Разложим на множители 18
18 = 2 • 3 • 3
Разложим на множители 21
21 = 3 • 7
Выберем одинаковые множители в обоих числах.
3
Находим произведение одинаковых множителей и записываем ответ
НОД (18; 21) = 3 = 3
НОК (Наименьшее общее кратное) 18 и 21
Наименьшим общим кратным (НОК) 18 и 21 называется наименьшее натуральное число, которое само делится нацело на каждое из этих чисел (18 и 21).
НОК (18, 21) = 126
Как найти наименьшее общее кратное для 18 и 21
Разложим на множители 18
18 = 2 • 3 • 3
Разложим на множители 21
21 = 3 • 7
Выберем в разложении меньшего числа (18) множители, которые не вошли в разложение
2 , 3
Добавим эти множители в разложение бóльшего числа
3 , 7 , 2 , 3
Полученное произведение запишем в ответ.
НОК (18, 21) = 3 • 7 • 2 • 3 = 126
Используем формулы кинематики и гравитационного притяжения.
a = F/m = GM/R².
V² = GM/R, V = 2πR/T.
Получаем M = V²R/G = 4π²R³/(T²G).
Подставим данные:
М = (4* 9,869604*(4,22*10^8)³)/(1.77*3600)²*6.67*10^(-11)) = 1,10*10^(30) кг.
2) Дано: ускорение силы тяжести на Марсе составляет 3,7 м/с², на Юпитере — 25 м/с².
Первая космическая скорость для планет определяется по формуле:
V = √(gR),
где:
g - ускорение свободного падения на поверхности планеты, м/с²;
R - радиус планеты, м.
Для Марса R = 3,488*10⁶ м,
для Юпитера R = 71,3*10⁶ м.
Получаем первую космическую скорость для:
Марса V = √(3.7*3.488*10⁶) = 3592,4 м/с ≈ 3,6 км/с;
Юпитера V = √(25*71,3*10⁶) = 42219,7 м/с ≈ 42,2 км/с.
3) Орбитальный период Т движущегося по эллиптической орбите тела вычисляется по формуле:
где
μ — гравитационный параметр, равный GM, гравитационная постоянная G = 6.67*10^(-11) (Н*м²/кг²), масса Марса М =6.4191*10^23 кг.a — длина большой полуоси, равная 1,25 а.е.