Наибольшую площадь всегда занимает квадрат. Наглядно это видно из таблицы умножения - Пифагора (обычно ее печатают на обложке тетради). Площадь прямоугольника не связана напрямую с периметром. Поэтому, зная периметр, нельзя однозначно установить какие стороны у прямоугольника. Так как, находя площадь фигуры, мы оперируем значениями на плоскости (измерение проводим в квадратных единицах - метрах, сантиметрах и т.д.), периметр - это линейная характеристика фигуры ( длинна сторон - сумма отрезков, измеряется в сантиметрах, метрах и т.д.).
Например, для квадрата со стороной 5 см площадь 25 кв. см, периметр 20 см. Прямоугольник со сторонами 4 см и 6 см тоже имеет периметр 20 см, но площадь занимает меньше - 4*6=24 кв.см. Прямоугольник со сторонами 7 и 3 см тоже имеет периметр 20, однако его площадь еще меньше - это 21 кв.см. Для прямоугольника со сторонами 8 и 2 см: периметр 20 см, площадь - 16 кв.см. Для прямоугольника со сторонами 9 и 1 см: периметр тоже 20, площадь фигуры 9 кв. см. Чем больше разница между длинами сторон прямоугольника, тем меньше будет площадь такой фигуры.
AC^2 = 25 + 49 - 70*(-0,7) = 123
AC = 11,1
AC/sinB = AB/sinC
sinC = AB*sinB/AC
sinC = 5*0,7/11,1 = 0,3153
AC/sinB = BC/sinA
sinA = BC*sinB/AC
sinA = 7*0,7/11,1 = 0,4414