Презрение к смерти рождает героев.На героя и слава бежит.Богатырь умрет — имя его останется.Тот побеждает, кто смерть презирает.Лучше биться орлом, чем жить зайцем.Бояться смерти, так и победителем не быть.Кто храбр да стоек, тот десятерых стоит.Хочешь жить — бейся насмерть.Герой в бою думает не о смерти, — о победе.Либо грудь в крестах, либо голова в кустах.Победит тот, кто не дрогнет.Кто сильнее себя не встречал, тот и герой.Героям страх неведом.Слава герою, презрение трусу.Герой, что море, — в непогодь только злей становится, а робкий, что лужа, — даже малый ветер всю расплещет.Бояться смерти — на свете не жить.Пример героя зовет на подвиг.Драться насмерть — завоевать бессмертие.Или умру героем, или вернусь героем.Герой не многих знает, а имя его вся страна повторяет.Двух смертей не бывать, а одной не миновать.Двум смертям не бывать, а одной не миновать.В подполье и мышь геройствует, а ты нам такого дай, чтобы и при коте не потел.Герой умирает — о себе память оставляет.Кто умирает со славой, тот не страшится смерти костлявой.Тот побеждает, кто смерть презирает.Кто мечтает о победе, тот не думает о смерти.Герой в бою думает не о смерти, а о победе.Смертью героя пал, а Родину не продал.Герой в бою как в песне запевала.Где герой пал, там курган встал.Слава герою, презрение трусу.За родную землю стой, как скала: трусу — пуля, герою — хвала.Герой за славой не гонится.Герой трусу не товарищ.Советские герои врагу могилу роют.На героя и слава бежит.Кто храбр да стоек, тот десятерых стоит.Герои куют победу.Лучше быть мертвым героем; чём живым трусом.Велик почет без геройства не живет.Наш народ — герой, ходит на врага стеной.Бей врага смертным боем — станешь героем.За каждого героя Родина горою.Герой — за Родину горой.Героем падешь — подымут, трусом — раздавят.Герои куют победу.Герой в бою думает не о смерти, а о победе.Герой за славой не гонится. итд
При вытаскивании карт рассуждаем в такой модели: вынутые карты кладутся на стол в чётком порядке: первая слева, вторая по центру, третья – справа. Так, наример тройки «Т♦ К♦ 9♥» и «9♥ Т♦ К♦» считаются различными. Т.е., короче говоря, рассматриваем упорядоченные тройки.
All. Всего варианто вытащить три карты в такой модели поведения: Первая 36-стью Вторая 35-тью Третья – 34-мя
Всего вариантов упорядоченной выборки – 36*35*34.
I. Вынуть на первое место бубну можно 9-тью вынуть на второе место бубну можно 8-мью вынуть НЕ БУБНУ на третье место можно 27-мью НЕ 34!). Всего с НЕ-БУБНОЙ на третьем месте.
II. Вынуть на первое место бубну можно 9-тью вынуть НЕ БУБНУ на второе место можно 27-мью НЕ 34!), вынуть на третье место бубну можно 8-мью Всего с НЕ-БУБНОЙ на втором месте.
III. Вынуть НЕ БУБНУ на первое место можно 27-мью НЕ 34!), вынуть на второе место бубну можно 9-тью вынуть на третье место бубну можно 8-мью Всего с НЕ-БУБНОЙ на втором месте.
0. Вынуть на первое место бубну можно 9-тью вынуть на второе место бубну можно 8-тью вынуть на третье место бубну можно 7-мью Всего со всеми бубнами.
Всего подходящих вариантов : 9*8*27 + 9*8*27 + 9*8*27 + 9*8*7 = 9*8*(3*27+7) = 9*8*88
*** было бы ошибкой считать во всех трёх случаях I – III не 27, а 34 и не учитывать отдельно ситуацию [0], так как при этом получилось бы выражение 9*8*102, вместо 9*8*88, поскольку в этом случае были бы посчитаны трижды такие упорядоченные тройки, как, например «Т♦ К♦ Д♦» , когда Д♦ выбрана из 34, либо K♦ выбран из 34, либо Т♦, а две остальные только из бубен.
Итоговая вероятность
При вытаскивании карт рассуждаем в другой модели: вынутые карты кладутся на стол беспорядочно, т.е. тройки «Т♦ К♦ 9♥» , «9♥ Т♦ К♦» и т.п. считаются неразличимыми. Т.е., короче говоря, рассматриваем неупорядоченные тройки.
All. Всего варианто вытащить три карты в такой модели поведения: Первая 36-стью Вторая 35-тью Третья – 34-мя И их можно перемешать внутри тройки 6-тью а значит неразличимых вариантов в 6 раз меньше:
Всего вариантов упорядоченной выборки – 36*35*34/6 = 6*35*34.
ДВЕ БУБНЫ Вынуть на одно из мест бубну можно 9-тью вынуть на ещё одно из мест бубну можно 8-мью причём эти места можно поменять местами, значит выбрать пары бубен можно К ним можно приложить НЕ БУБНУ 27-мью НЕ 34!). Всего с одной НЕ-БУБНОЙ на одном из мест мест.
ТРИ БУБНЫ Вынуть на одно из мест бубну можно 9-тью вынуть на ещё одно из мест бубну можно 8-тью вынуть на последнее из мест бубну можно 7-мью И их можно перемешать внутри тройки 6-тью а значит неразличимых вариантов в 6 раз меньше: Всего со всеми бубнами.
Всего подходящих вариантов : 9*4*27 + 3*4*7 = 3*4*(3*27+7) = 3*4*88
*** было бы ошибкой смешивать случай с двумя и с тремя бубнами, считая третью карту не одной из 27, а сразу одной из 34, так как при этом получилось бы выражение 3*4*102, вместо 3*4*88, поскольку в этом случае были бы посчитаны трижды такие неупорядоченные тройки, как, например «Т♦ К♦ Д♦», когда Т♦ выбран из 34, либо K♦ выбран из 34, либо Д♦, а две остальные из девяти и восьми.
Можно составить уравнение учтем следующее: х- это куры у- это утки z - это гуси составляем уравнение x+y+z=100 1*x это сумма которую потратим на кур 10*у это сумма потраченная на утку 50*z это сумма потраченная на гуся составляем уравнение 1*х+10*у+50*z=500 получается система уравнений х+у+z=100 1*x+10*y+50*z=500 из первого уравнения выразим х получится х=100-у-z получается такое уравнение, когда подставим второе (100-у-z)+10*e+50*z=500 открываем скобки -у-z+10*у+50*z=500-100 получаем 9*y+49*z=400 y=400-49z/9 y=351/9=39 y=39 уток А поскольку нам нужно купить количество птиц целое число, то чисто логически понимаем, что гуся сможем купить только одного Теперь подставим найденные значения в уравнение х=100-у-z то есть х=100-39-1=60 х=60 кур можно проверить вспомним второе уравнение 1*х+10*у+50*z=500 подставляем найденные значения 1*60+10*39+50*1=500 60+390+50=500 Получается на сумму 500 рублей мы сможем купить 60 кур, 39 уток и 1 гусь ответ: 60 кур, 39 уток и 1 гусь