Рационáльное числó (лат. ratio «отношение, деление, дробь») — число, которое можно представить обыкновенной дробью {\displaystyle {\frac {m}{n}}}{\frac {m}{n}}, числитель {\displaystyle m}m — целое число, а знаменатель {\displaystyle n}n — натуральное число. К примеру {\displaystyle {\frac {2}{3}}}{\frac {2}{3}}, где {\displaystyle m=2}{\displaystyle m=2}, а {\displaystyle n=3}n=3. Понятие дроби возникло несколько тысяч лет назад, когда, сталкиваясь с необходимостью измерять некоторые величины (длину, вес, площадь и т. п.), люди поняли, что не удаётся обойтись целыми числами и необходимо ввести понятие доли: половины, трети и т. п. Дробями и операциями над ними пользовались, например, шумеры, древние египтяне и греки.
Содержание
1 Множество рациональных чисел
2 Терминология
2.1 Формальное определение
2.2 Связанные определения
2.2.1 Правильные, неправильные и смешанные дроби
2.2.2 Высота дроби
2.3 Комментарий
3 Свойства
3.1 Основные свойства
3.2 Дополнительные свойства
4 Счётность множества
5 Недостаточность рациональных чисел
6 См. также
7 Примечания
8 Литература
Множество рациональных чисел
Множество рациональных чисел обозначается {\displaystyle \mathbb {Q} }\mathbb {Q} (от лат. quotient, «частное») и может быть записано в таком виде:
{\displaystyle \mathbb {Q} =\left\{{\frac {m}{n}}\mid m\in \mathbb {Z} ,\ n\in \mathbb {N} \right\}.}{\displaystyle \mathbb {Q} =\left\{{\frac {m}{n}}\mid m\in \mathbb {Z} ,\ n\in \mathbb {N} \right\}.}
Другими словами, числитель (m) может иметь знак, а знаменатель (n) должен быть натуральным числом.
При этом оказывается, что разные записи могут представлять одну и ту же дробь, например, {\displaystyle {\frac {3}{4}}}{\frac {3}{4}} и {\displaystyle {\frac {9}{12}}}{\frac {9}{12}}, (все дроби, которые м
2x₁ - x₂ + 3x₃ = -7
x₁ + 2x₂ - x₃ = 4
3x₁ -x₂ -2x₃ = 1
В чём суть метода Гаусса?
Надо сделать всякие тождественные преобразования с уравнениями, чтобы в конечном счёте остались 3 уравнения, в одном 3 слагаемых в левой части равенства, во 2-м два слагаемых, в 3-м одно слагаемое.
Учтём, что уравнения можно умножать на одно и тоже число, складывать их, вычитать...
Итак. Начинаем. Одно уравнение оставляем для конечной системы. Можно оставить любое. Оставим то, которое попроще на наш взгляд. 1) Ну, пусть это будет x₁ + 2x₂ - x₃ = 4 (*)
Теперь с двумя уравнениями( любыми) делаем преобразования, чтобы осталось два слагаемых.
x₁ + 2x₂ - x₃ = 4| *(-3) -3x₁ -6x₂ + 3 x₃ = -12
3x₁ - x₂ -2x₃ = 1 3x₁ -x₂ -2x₃ = 1
Сложим почленно.
2) Получим: -7x₂ + x₃ = -11 (**) Получили второе уравнение в конечную систему.
3) Вс работа. Ещё такое же сотворим.
2x₁ - x₂ + 3x₃ = -7 2x₁ - x₂ + 3x₃ = -7
x₁ + 2x₂ - x₃ = 4 | * (-2) , -2x₁ - 4x₂ +2x₃ = -8
Сложим почленно
Получим: -5x₂ +5x₃ = - 15 или x₂ - x₃ = 3
4) -7x₂ + x₃ = -11 -7x₂ + x₃ = -11
x₂ - x₃ = 3 | *7 7x₂ - 7x₃ = 21
Сложим почленно
Получим: -6x₃ = 10 (***)
Получили третье уравнение в конечную систему. Вот она:
x₁ + 2x₂ - x₃ = 4
-4x₂ + x₃ = -11
-6x₃ = 10
Вся мутота ради этой системы. Она решается просто. Начиная с 3-его уравнения, ищутся неизвестные.