Семья муратовых состоит из мужа, жены и их сына-студента. если бы зарплата мужа увеличилась вдвое, общий доход семьи вырос бы на 44%. если бы стипендия сына уменьшилась втрое, общий доход семьи сократился бы на 4%. сколько процентов от общего дохода семьи составляет зарплата жены?
Сумма трёх чисел a₁+a₂+a₃=33 Используя свойства арифметической прогрессии находим a₂ и a₃ a₂=a₁+d a₃=a₂+d=(a₁+d)+d=a₁+2d Перепишем сумму трёх чисел a₁+a₁+d+a₁+2d=33 3a₁+3d=33 3a₁=33-3d a₁=(33-3d)/3=11-d Далее переходим к геометрической прогрессии. Известно, что b₁=a₁=11-d b₂=a₂-3=(a₁+d)-3=11-d+d-3=8 b₃=a₃-2=(a₁+2d)-2=11-d+2d-2=9+d Из свойств геометрической прогрессии, по формуле нахождения n-го члена геометрической прогрессии b(n)²=b(n-1)*b(n+1) получим следующее b₂²=b₁*b₃ 8²=(11-d)*(9+d) 99+11d-9d-d²=64 -d²+2d+99-64=0 -d²+2d+35=0 D=2²-4*(-1)*35=4+140=144 d=(-2-12)/-2=7 - данный корень не подходит, так как арифметическая прогрессия убывающая разность d должна быть отрицательной. d=(-2+12)/-2=-5 a₁=11-(-5)=16 a₂=16-5=11 a₃=11-5=6 Проверяем 16+11+6=33
Одним из решений, очевидно, является x=0. Так как /sin x/≤1, то решения могут существовать лишь на интервале [-0,1;0,1]. Производные функций sin(x) и 10*x соответственно равны cos(x) и 10, на интервале [-0,1;0,1] обе производные положительны и обе функции возрастают. Однако так как cos(x)<10, то на интервале [0;1] функция sin(x) возрастает медленнее, чем функция 10*x. Поэтому на этом интервале 10*x>sin(x), так что других решений, кроме x=0, на этом интервале нет. А так как обе функции - нечётные, то нет их и на интервале [-0,1;0). ответ: 1 решение.
50%
Пошаговое объяснение:
x% составляет зарплата мужа от общего дохода
y% составляет зарплата жены от общего дохода
z% составляет стипендия сына от общего дохода
x+y+z=100% (1)
2x+y+z=144% (2)
вычтем из (2) (1) х=44%
x+y+z/3=96% (3)
вычтем из (1) (3) 2z/3=4% z=6%
44%+y+6%=100%
y=50%