М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
arminqamalyan85
arminqamalyan85
04.10.2022 17:53 •  Математика

Планы каких сражений вы уже рассматривали на уроках окружающего мира

👇
Ответ:
vedmochkasalyt
vedmochkasalyt
04.10.2022
То что я знаю:
Ледовое побоище
Невская битва
4,6(92 оценок)
Открыть все ответы
Ответ:
ket95651
ket95651
04.10.2022

на плоскости:

1)  пролегает мимо окружности

2) пролегает через центр окружности

3) прямая имеет 2 точки касания с окружностью

4) прямая имеет 1 точку касания с окружностью

в мимо окружности в перпендикулярной плоскости

6) мимо окружности под углом к плоскости окружности

7) пролегает через центр окружности в перпендикулярной плоскости

8) пролегает через центр окружности под углом к плоскости окружности

9) прямая имеет 1 точку касания с окружностью в перпендикулярной плоскости

10)  прямая имеет 1 точку касания с окружностью под углом к плоскости окружности

11) прямая имеет 1 точку касания с кругом в перпендикулярной плоскости

12) прямая имеет 1 точку касания с кругом под углом к плоскости окружности

4,5(58 оценок)
Ответ:
YukineeKawaiiNo
YukineeKawaiiNo
04.10.2022

Как составить уравнение биссектрисы треугольника по координатам его вершин Используя уравнение биссектрисы угла:

 

 

Пример.

Даны вершины треугольника A(-5;4), B(7;-1) и C(3;10).

1) Составить уравнение биссектрисы треугольника ABC, выходящей из вершины A.

2) Найти длину этой биссектрисы.

1) Угол A образован прямыми AB и AC. Составим уравнения этих прямых.

Уравнение прямой, проходящей через две точки, можно найти, например, по формуле  

 

 

Уравнение прямой AB:

 

 

 

 

Уравнение прямой AC:

 

 

 

 

Подставляем уравнения прямых AB и AC в формулы уравнения биссектрис угла:

 

 

 

 

 

 

 

 

и

 

 

то есть

 

 

и

 

 

Из этих уравнений является уравнением биссектрисы внутреннего угла BAC треугольника, другое — биссектрисой внешнего угла при вершине A. Как отличить уравнение биссектрисы внутреннего угла?

Точки B и C лежат по одну сторону от биссектрисы внешнего угла, поэтому при подстановке координат B и C в уравнение мы получим числа одинакового знака. От биссектрисы внутреннего угла B и C лежат по разные стороны, поэтому подстановка их координат в уравнение биссектрисы внутреннего угла даёт нам числа разных знаков.

Подставляем в уравнение x-8y+37=0 координаты B и C.  

B(7;-1):  7-8·(-1)+37>0

C(3;10):  3-8·10+37<0.

Таким образом, уравнение x-8y+37=0 является уравнением биссектрисы AF треугольника ABC.

2) Чтобы найти длину биссектрисы, найдём точку пересечения прямых AF и BF.

Уравнение прямой BC:

 

 

 

 

Координаты точки пересечения прямых AF и BC находим из системы уравнений  

 

 

Решение системы —  

 

 

Длину биссектрисы AF находим по формуле расстояния между точками A и F:

 

 

 

 

 

 

Пошаговое объяснение:

Как составить уравнение биссектрисы треугольника по координатам его вершин Используя уравнение биссектрисы угла:

 

 

Пример.

Даны вершины треугольника A(-5;4), B(7;-1) и C(3;10).

1) Составить уравнение биссектрисы треугольника ABC, выходящей из вершины A.

2) Найти длину этой биссектрисы.

1) Угол A образован прямыми AB и AC. Составим уравнения этих прямых.

Уравнение прямой, проходящей через две точки, можно найти, например, по формуле  

 

 

Уравнение прямой AB:

 

 

 

 

Уравнение прямой AC:

 

 

 

 

Подставляем уравнения прямых AB и AC в формулы уравнения биссектрис угла:

 

 

 

 

 

 

 

 

и

 

 

то есть

 

 

и

 

 

Из этих уравнений является уравнением биссектрисы внутреннего угла BAC треугольника, другое — биссектрисой внешнего угла при вершине A. Как отличить уравнение биссектрисы внутреннего угла?

Точки B и C лежат по одну сторону от биссектрисы внешнего угла, поэтому при подстановке координат B и C в уравнение мы получим числа одинакового знака. От биссектрисы внутреннего угла B и C лежат по разные стороны, поэтому подстановка их координат в уравнение биссектрисы внутреннего угла даёт нам числа разных знаков.

Подставляем в уравнение x-8y+37=0 координаты B и C.  

B(7;-1):  7-8·(-1)+37>0

C(3;10):  3-8·10+37<0.

Таким образом, уравнение x-8y+37=0 является уравнением биссектрисы AF треугольника ABC.

2) Чтобы найти длину биссектрисы, найдём точку пересечения прямых AF и BF.

Уравнение прямой BC:

 

 

 

 

Координаты точки пересечения прямых AF и BC находим из системы уравнений  

 

 

Решение системы —  

 

 

Длину биссектрисы AF находим по формуле расстояния между точками A и F:

 

 

 

 

 

 

4,5(78 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ