Пусть функция определена на множестве E Пусть где . Понятно, что для любого на области от (то есть: ) выполняется . Следовательно, для , выполняется .
Получили, что для любого есть , на области которой выполняется (Проще говоря: ). Следовательно - . Что и требовалось доказать. Для нужно отдельно доказать предел .
Теперь в чём проблема самого вопроса: мы только что доказали непрерывность функции на любом подмножестве . Но! Множество натуральных чисел тоже подмножество , значит тоже непрерывна, получается - доказали что непрерывна на области определения? Известно, что тоже непрерывна на области определения, но , понятное дело, не определена на ! Потому вопрос, ИМХО, поставлен не верно (претензия не к тебе, а скорее к преподавателям твоим). Правильно задать вопрос указывая то множесто точек, которое интересует: к примеру "непрерывна на " или, "непрерывна на отрезке "... Тем более, что есть понятие "равномерная непрерывность" - свойство области, а не так, как "непрерывность" - свойство точки. Отсюда и непонимание. А то получается: спрашивают об области, а проверяют точку. Будут вопросы - пиши.
P.S. Исправил ошибки в наборе символов. Текста много :)
Из определения медианы следует, что значения первой половины чисел до медианы должны быть не больше ее значения (естественно, при расположении числового набора в порядке возрастания значений), а значения второй половины числового ряда — не меньше. Предположим, что первое убранное число находилось в первой половине ряда (для данной задачи — до числа №50, тогда медианой оставшихся чисел будет число №51 данного ряда. Если же убранное число принадлежало второй половине ряда, то медианой оставшихся чисел будет число №50, причём оно не больше, чем число №51. Тогда число №50 равно 38, а число №51 — 52. Таким образом, медиана всего набора (поскольку в наборе четное количество чисел) будет средним арифметическим: (38+52):2=45.
ответ: 830,77 грамм.