А1 3) 27 градусов А2 4) 75 градусов
Пошаговое объяснение:
А1
Треугольник КОС прямоугольный, а сумма углов в треугольнике равна 180 градусов. Из этого следует, что угол КОС = 180- (90+27)= 63.
Углы КОС и МОА - вертикальные, а следовательно равны. МОА=63 градуса.
Из рисунка следует, что треугольник МОА прямоугольный. По правилам сумма углов в треугольнике = 180. Следовательно угол ВАК = 180 - (90+63)=27
А2
Биссектриса делит угол пополам, следовательно угол КСВ=20 градусов.
Т.к. сумма углов в треугольнике равна 180 градусов угол В= 180-85-20=75 градусов
Большинство экономических задач на спрос и предложение однотипны и сводятся к необходимости определить равновесную цену или объем продукции, при которых рынок находится в равновесии. Это одна из самых легких задач экономической теории.
Важно помнить, что равновесие рынка может достигаться только при условии, что спрос равен предложению.
Обычно по условиям задачи даются уравнения спроса и предложения и предлагается по данным уравнениям определить точку равновесия.
Например, уравнение спроса:
QD = 100 - 20P,
уравнение предложения:
QS = 10P + 10
Р – это цена товара (услуги)
Q – количество товара (услуги), который рынок готов продать или покупатель готов приобрести по данной цене.
Для определения равновесной цены и объема товара необходимо два данных уравнения приравнять друг другу и найти решение:
100 - 20P = 10P + 10
30P = 90
P = 90 / 30 = 3
Отсюда Q = 100 - 20 * 3 = 10 * 3 + 10 = 40
Это решение также называется алгебраическим, то есть найденным путем решения уравнений.
Существует также табличный решения данной задачи. Когда студент сам произвольным образом задает значения цены (Р) и находит для каждого значения цены значение спроса и предложения по заданным уравнениям. А затем, путем анализа полученных значений, представленных в виде таблицы, находит то, при котором спрос равен предложению. Это и является ответом на задание.
Есть также графический решения данной задачи, который заключается в том, что по данным таблицы со значениями спроса и предложения для разных значений цены строятся кривые спроса и предложения и находится точка их пересечения, которая и будет являться точкой равновесия на рынке.
В данном случае точка Е является точкой равновесия, так как в ней пересекаются кривые спроса и предложения.
Также в задачах можно встретить усложнение условий и необходимость рассчитать новую точку равновесия на рынке в условиях, когда в рыночные взаимоотношения начинает вмешиваться государство. Например, оно может облагать налогом производителей или давать им субсидии. Здесь следует помнить, что введение налога на производителей неизбежно ведет к росту цен и изменению точки равновесия, так как производитель будет пытаться «отбить» дополнительные затраты с покупателей. Если же государство вводить субсидии для производителей, то это имеет обратный эффект – цена будет снижаться.
С точки зрения решения задачи в случае с налогами новая равновесная цена будет определяться так. Допустим, государство ввело налог 3 рубля с каждой единицы товара. Тогда с каждой единицы товара производитель будет получать на 3 рубля меньше, и новое уравнение предложения будет выглядеть следующим образом:
QS = 10(P - 3) + 10
Находим равновесную цену:
100 - 20P = 10(P - 3) + 10
120 = 30Р
Р = 120 / 30 = 4
Тогда Q = 100 – 20 * 4 = 20
Таким образом, равновесная цена стала больше, а равновесный объем – меньше.
Кривая предложения при этом сместится вниз вправо.
Если рассматривать случай с субсидиями, то ситуация противоположная. Допустим, государство дает субсидию для производителя в размере 3 рубля на каждую единицу товара. Тогда с каждой единицы товара производитель будет получать на 3 рубля больше, и новое уравнение предложения будет выглядеть следующим образом:
QS = 10(P + 3) + 10
Находим равновесную цену:
100 - 20P = 10(P + 3) + 10
60 = 30Р
Р = 60 / 30 = 2
Тогда Q = 100 – 20 * 2 = 60
Таким образом, равновесная цена стала меньше, а равновесный объем – больше.
Кривая предложения при этом сместится вверх влево.
2017, 2018, ... 2027, (2028, ... , 20179999)
(2028, ... , 20179999), 20180000, ... , 2018010
В скобки взяты одинаковые части двух последовательностей. При вычитании произведений цифр каждого числа первой последовательности из произведений цифр этого же числа второй последовательности, мы получим нуль.
Осталось перемножить цифры оставшихся чисел из первой и второй последовательностей и найти их разность.
Произведение цифр каждого числа первой последовательности 2017, 2018, ..., 2026, 2027 равно нулю. Также равно нулю произведение цифр всех оставшихся чисел второй последовательности - 20180000, 20180001, ... , 20180010. Произведения цифр чисел равны нулю, т.к. в каждое число входит цифра 0.
Следрвательно, сумма всех чисел равна нулю.