Докажем существование разложения числа n на простые множители, предполагая, что оно уже доказано для любого другого числа, меньшего n. Если n — простое, то существование доказано. Если n — составное, то оно может быть представлено в виде произведения двух чисел aи b, каждое из которых больше 1, но меньше n. Числа a и b либо являются простыми, либо могут быть разложены в произведение простых (уже доказано ранее). Подставив их разложение в n, получим разложение исходного числа n на простые. Существование доказано.
Кратные Дольные
величина название обозначение величина название обозначение
101 м декаметр дам dam 10−1 м дециметр дм dm
102 м гектометр гм hm 10−2 м сантиметр см cm
103 м километр км km 10−3 м миллиметр мм mm
106 м мегаметр Мм Mm 10−6 м микрометр мкм µm
109 м гигаметр Гм Gm 10−9 м нанометр нм nm
1012 м тераметр Тм Tm 10−12 м пикометр пм pm
1015 м петаметр Пм Pm 10−15 м фемтометр фм fm
1018 м эксаметр Эм Em 10−18 м аттометр ам am
1021 м зеттаметр Зм Zm 10−21 м зептометр зм zm
1024 м иоттаметр Им Ym 10−24 м иоктометр им ym
2) 50+25=75 ( штук ) - наклеек и стикеров всего.