М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Kate24512
Kate24512
14.03.2020 19:57 •  Математика

1)плоскость сечения шара делит его радиус, перпендикулярный этой плоскости, в отношении 1: 3 (считая от центра). площадь поверхности шара равна 96. найдите площадь сечения 2)шар пересечен плоскостью, отстоящей от центра шара на корень из 10\п. найдите площадь сечения, если площадь поверхности шара равна 78.

👇
Ответ:
Egorka000000000
Egorka000000000
14.03.2020
1) Площадь поверхности шара  S=4πR² = 96  - по условию
   4πR² = 96
   πR² = 24
  
R^2 = \frac{24}{ \pi } \\ \\ R= \sqrt{ \frac{24}{ \pi } } =2 \sqrt{ \frac{6}{ \pi } }

Радиус R=OK разделен в отношении 1:3 (считая от центра)
\frac{OC}{CK} = \frac{1}{3}
CK = 3*OC
R = OC + CK = OC + 3*OC=4*OC

R=2 \sqrt{ \frac{6}{ \pi } }=4*OC \\ \\ OC = \frac{1}{2} \sqrt{ \frac{6}{ \pi } }

Прямоугольный ΔOCM
OM = R=2 \sqrt{ \frac{6}{ \pi } } \\ \\ OC =\frac{1}{2} \sqrt{ \frac{6}{ \pi } }
Теорема Пифагора
OM² = OC² + CM²
CM^2 = OM^2 - OC^2 \\ \\ CM^2=(2 \sqrt{ \frac{6}{ \pi } } )^2-(\frac{1}{2} \sqrt{ \frac{6}{ \pi } } )^2= \\ \\ =\frac{24}{ \pi } - \frac{1}{4} * \frac{6}{ \pi } = \frac{24}{ \pi } - \frac{3}{2 \pi } = \frac{45}{2 \pi }

Площадь сечения 
S_c= \pi r^2 = \pi CM^2 = \pi * \frac{45}{2 \pi } =22,5

2)Площадь поверхности шара  S=4πR² = 78  - по условию
   4πR² = 78
   πR² = 19,5
   R^2 = \frac{19,5}{ \pi }

  Прямоугольный ΔOCM
   OC = \sqrt{ \frac{10}{ \pi } }
   OM² = R²

Теорема Пифагора
OM² = OC² + CM²
CM^2 = OM^2 - OC^2 = \frac{19,5}{ \pi }- (\sqrt{ \frac{10}{ \pi } }) ^2= \\ \\ = \frac{19,5}{ \pi } - \frac{10}{ \pi } = \frac{9,5}{ \pi }
Площадь сечения

S_c = \pi r^2 = \pi *CM^2= \pi *\frac{9,5}{ \pi} =9,5

1)плоскость сечения шара делит его радиус, перпендикулярный этой плоскости, в отношении 1: 3 (считая
1)плоскость сечения шара делит его радиус, перпендикулярный этой плоскости, в отношении 1: 3 (считая
4,5(48 оценок)
Открыть все ответы
Ответ:
monster19977s2
monster19977s2
14.03.2020
Континентальный арктический воздух, сформировавшийся над полями районов Гренландии и Шпицбергена, на пути к нам пересекает теплое течение Гольфстрим. Он соприкасается с незамерзающим Норвежским моем, прогревается, увлажняется и, таким образом приобретает все свойства морского воздуха.
Приходит в циклонах, сопровождающихся свежими ветрами и снегопадами, или же в хорошо оформленных антициклонах, образующихся в процессе своего продвижения полосу высокого давления с Арктики на Балканы.
Летом он довольно регулярно проходит со стороны Лаптевого моря, через Берингов пролив.
4,5(44 оценок)
Ответ:
nekitder
nekitder
14.03.2020
1 задача) Чтобы найти наименьшее количество цифр, котрые дали такое большое число как 2017 надо взять самые большиие цифры-9. Но число 2017 не делится на 9, но делится число 2016 (делимость на 9) , значит, одна из цифр будет 1, а остальные 9ки. (2017-1):224 штук девяток. Наименьшее число 19999 по заданию 1*225=225. ответ:225. 2 задача) тут много размышлений не распишу, вот результат : 1 сундук -врёт, 2 сундук-правда, 3 сундук- правда 4 сундук-врет. 5 сундук врет. 6 сундук -правда. Результат: клад во втором сундуке
4,4(39 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ