AC - диагональ ромба. Вторая диагональ BD проходит перпендикулярно AC через её середину. Найдём точку O пересечения диагоналей. Это - середина отрезка AC. O((3+12)/2; (1-2)/2) = (15/2; -1/2) = (7,5; -0,5) Найдём уравнение диагонали BD. Это прямая, проходящая через точку O перпендикулярно AC. Угловой коэффициент этой прямой k = 1/3. y-(-0,5) = -1/(-1/3)·(x-7,5) y+0,5 = 3*(x-7,5) y+0,5 = 3x-22,5 y = 3x-23 Найдём точки пересечения диагонали BD с прямыми (1) и (2). Это и будут координаты вершин B и D. 1) 2/5x-1/5 = 3x-23 ×5 2x-1 = 15x-115 15x-2x = 115-1 13x = 114 x = 114/13 = 8 10/13 y(114/13) = 2/5*114/13-1/5 = 228/65-13/65 = 215/65 = 43/13 = 3 4/13 B(8 10/13; 3 4/13)
1. Все три одинакове проекции дают куб и сфера. 2. Для обозначения окружности (ее самой большой хорды) используют знак диаметр - ∅ и обозначают буквой D или d латинского алфавита; радиус - R; для обозначения длины окружности применяют обозначение С и находят ее по формуле: c = πd или с = πr²; 3. Отношение размеров предмета на чертеже к их действительным размерам называется масштабом чертежа. 4. Число обозначающее натуральную величину на чертеже называется размер. 5. Линия пересечения двух плоскостей проекций называется осью. 6. Сторона правильного шестиугольника равна радиусу окружности описывающей этот шестиугольник.
1. Все три одинакове проекции дают куб и сфера. 2. Для обозначения окружности (ее самой большой хорды) используют знак диаметр - ∅ и обозначают буквой D или d латинского алфавита; радиус - R; для обозначения длины окружности применяют обозначение С и находят ее по формуле: c = πd или с = πr²; 3. Отношение размеров предмета на чертеже к их действительным размерам называется масштабом чертежа. 4. Число обозначающее натуральную величину на чертеже называется размер. 5. Линия пересечения двух плоскостей проекций называется осью. 6. Сторона правильного шестиугольника равна радиусу окружности описывающей этот шестиугольник.
y = 2/5x-1/5 (1)
2x-5y-34=0
y = 2/5x-34/5 (2)
x+3y-6=0
y = -1/3x+2 (3)
Прямые (1) и (2) параллельны, т.к. угловые коэффициенты равны. Значит (1) и (2) - противоположные стороны ромба.
Найдём координаты точек пересечения диагонали со сторонами ромба:
1) 2/5x-1/5 = -1/3x+2 ×15
6x-3 = -5x+30
6x+5x = 30+3
11x = 33
x = 3
y(3) = 2/5*3-1/5 = 6/5-1/5 = 5/5 = 1
A(3; 1)
2) 2/5x-34/5 = -1/3x+2 ×15
6x-102 = -5x+30
6x+5x = 102+30
11x = 132
x = 12
y(12) = 2/5*12-34/5 = 24/5-34/5 = -10/5 = -2
C(12; -2)
AC - диагональ ромба. Вторая диагональ BD проходит перпендикулярно AC через её середину. Найдём точку O пересечения диагоналей. Это - середина отрезка AC.
O((3+12)/2; (1-2)/2) = (15/2; -1/2) = (7,5; -0,5)
Найдём уравнение диагонали BD. Это прямая, проходящая через точку O перпендикулярно AC. Угловой коэффициент этой прямой k = 1/3.
y-(-0,5) = -1/(-1/3)·(x-7,5)
y+0,5 = 3*(x-7,5)
y+0,5 = 3x-22,5
y = 3x-23
Найдём точки пересечения диагонали BD с прямыми (1) и (2). Это и будут координаты вершин B и D.
1) 2/5x-1/5 = 3x-23 ×5
2x-1 = 15x-115
15x-2x = 115-1
13x = 114
x = 114/13 = 8 10/13
y(114/13) = 2/5*114/13-1/5 = 228/65-13/65 = 215/65 = 43/13 = 3 4/13
B(8 10/13; 3 4/13)
2) 2/5x-34/5 = 3x-23 ×5
2x-34 = 15x-115
15x-2x = 115-34
13x = 81
x = 81/13 = 6 3/13
y(81/13) = 2/5*81/13-34/5 = 162/65-442/65 = -310/65 = -62/13 = -4 10/13
D(6 3/13; -4 10/13)
ответ: A(3; 1), B(8 10/13; 3 4/13), C(12; -2), D(6 3/13; -4 10/13)