М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
galina510
galina510
03.12.2021 12:31 •  Математика

На дне озера бьют ключи .стадо из 183 слонов может выпить озеро за 1 день , а стадо из 37 слонов может выпить за 5 дней.за сколько дней выпьет озеро 1 слон?

👇
Ответ:
LEST98
LEST98
03.12.2021
Задача с хитростью - За пять дней будет четыре ночи.
Введем переменную - слон*день = слонодень.
РЕШЕНИЕ
1) 37*5 = 185 (слонодней) - всего воды
2) 185 - 183 = 2 (слонодня) - поступило воды за четыре ночи из родника.
3) 2 (слонядня) : 4 (ночи) = 0,5 слонодня воды в день из родника.
Пока один слон будет за 183 дня пить "озеро", то за 182 ночи ему добавится еще 
4)  0,5*182 = 91 (слонодень) - вода из родника.
За 90 ночей ему "накапает" из родника еще
5) 0,5* 90 = 45 слонодней и далее
6) 0,5*44 = 22 слонодня за 44 ночи
7) 0,5*22 = 11 слонодней за 21 ночь (примерно)
8) 0,5*10 = 5 слонодней за 10 ночей
9) 0,5*4 = 2 слонодня за 9 ночей
10) 183+91+45+22+11+5+2 = 359 дней одному слону - ОТВЕТ
4,4(65 оценок)
Открыть все ответы
Ответ:
valeria02042004
valeria02042004
03.12.2021

ответ:

1) область определения функции. точки разрыва функции.  

2) четность или нечетность функции.  

y(-x)=x3+6·x2  

функция общего вида  

3) периодичность функции.  

4) точки пересечения кривой с осями координат.  

пересечение с осью 0y  

x=0, y=0  

пересечение с осью 0x  

y=0  

-x3+6·x2=0  

x1=0, x2=6  

5) исследование на экстремум.  

y = -x^3+6*x^2  

1. находим интервалы возрастания и убывания. первая производная.  

f'(x) = -3·x2+12·x  

или  

f'(x)=3·x·(-x+4)  

находим нули функции. для этого приравниваем производную к нулю  

x·(-x+4) = 0  

откуда:  

x1 = 0  

x2 = 4  

(-∞ ; 0) (0; 4) (4; +∞)

f'(x) < 0 f'(x) > 0 f'(x) < 0

функция убывает функция возрастает функция убывает

в окрестности точки x = 0 производная функции меняет знак с (-) на (+). следовательно, точка x = 0 - точка минимума. в окрестности точки x = 4 производная функции меняет знак с (+) на (-). следовательно, точка x = 4 - точка максимума.  

2. найдем интервалы выпуклости и вогнутости функции. вторая производная.  

f''(x) = -6·x+12  

находим корни уравнения. для этого полученную функцию приравняем к нулю.  

-6·x+12 = 0  

откуда точки перегиба:  

x1 = 2  

(-∞ ; 2) (2; +∞)

f''(x) > 0 f''(x) < 0

функция вогнута функция выпукла

6) асимптоты кривой.  

y = -x3+6·x2  

уравнения наклонных асимптот обычно ищут в виде y = kx + b. по определению асимптоты:  

находим коэффициент k:  

поскольку коэффициент k равен бесконечности, наклонных асимптот не существует.  

4,8(73 оценок)
Ответ:
1dianalady1
1dianalady1
03.12.2021

ответ:

пересечения кривой с осями координат.  

пересечение с осью 0y  

x=0, y=0  

пересечение с осью 0x  

y=0  

-x3+6·x2=0  

x1=0, x2=6  

5) исследование на экстремум.  

y = -x^3+6*x^2  

1. находим интервалы возрастания и убывания. первая производная.  

f'(x) = -3·x2+12·x  

или  

f'(x)=3·x·(-x+4)  

находим нули функции. для этого приравниваем производную к нулю  

x·(-x+4) = 0  

откуда:  

x1 = 0  

x2 = 4  

(-∞ ; 0) (0; 4) (4; +∞)

f'(x) < 0 f'(x) > 0 f'(x) < 0

функция убывает функция возрастает функция убывает

в окрестности точки x = 0 производная функции меняет знак с (-) на (+). следовательно, точка x = 0 - точка минимума. в окрестности точки x = 4 производная функции меняет знак с (+) на (-). следовательно, точка x = 4 - точка максимума.  

2. найдем интервалы выпуклости и вогнутости функции. вторая производная.  

f''(x) = -6·x+12  

находим корни уравнения. для этого полученную функцию приравняем к нулю.  

-6·x+12 = 0  

откуда точки перегиба:  

x1 = 2  

(-∞ ; 2) (2; +∞)

f''(x) > 0 f''(x) < 0

функция вогнута функция выпукла

6) асимптоты кривой.  

y = -x3+6·x2  

уравнения наклонных асимптот обычно ищут в виде y = kx + b. по определению асимптоты:  

находим коэффициент k:  

поскольку коэффициент k равен бесконечности, наклонных асимптот не существует.  

4,4(31 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ