Пусть скорость автобуса x км/ч, тогда скорость грузовой машины (x+17) км/ч. Скорость сближения x+x+17 = 2x+17 км/ч. Встретились через 3 часа, то есть
(2x+17)\cdot3=453\\2x+17=151\\2x=134\\x=67
Скорость автобуса 67 км/ч, грузовой машины 67+17 = 84 км/ч система уравнений:
Пусть скорость автобуса x км/ч, скорость грузовой машины y км/ч.
Скорость грузовой машины на 17 км/ч больше скорости автобуса, т.е. y-x = 17.
Встретились через 3 часа, то есть (x+y)*3 = 453.
Составим и решим систему уравнений
\begin{cases}y-x=17\\(x+y)\cdot3=453\end{cases}\Rightarrow\begin{cases}x=y-17\\(y-17+y)\cdot3=453\end{cases}(y-17+y)\cdot3=453\\2y-17=151\\2y=168\\y=84\\\begin{cases}x=84-17=67\\y=84\end{cases}
Скорость автобуса 67 км/ч, грузовой машины 84 км/ч.
Пошаговое объяснение:
обозначим прямоугольник авсд. угол мав=45, угол мсв=30. мв=4. поскольку угол мав=45, то в прямоугольном треугольнике амв угол амв=45. тгда этот треугольник равнобедренный и ав=мв=4. мв/вс=tgмсв. отсюда ад=вс=мв/tg30=4 корня из 3. диагональ вд=корень из (ав квадрат + вс квадрат)=корень из (16+48)=8. мд квадрат=мв квадрат + вд квадрат=16+64=80. амквадрат=мвквадрат + ав квадрат=16+16=32. в треугольнике мад ам квадрат + ад квадрат=32+48=80. но это равно мд квадрат значит мд гипотенуза прямоугольного треугольника мад. аналогично мс квадрат=мв квадрат + вс квадрат=16+48=64. тогда в треугольнике мсд мс квадрат + дс квадрат=64+16=80. и он также прямоугольный. стороны равны ав=дс=4. ад=вс=4 корня из 3. площадь мдс равна s мдс=1/2*мс*дс=1/2*8*4=16.
Полная площадь цилиндра равна S= 2*pi*R*(R+h) в нашем случае h=a , а R=a/2 В итоге получаем S= 2*3.14* 2*(2+4)=75.36cм^2