ответ: 0,664 - вызов будет принят.
Пошаговое объяснение:
Вероятность первого вызова: p₁ = 0.2 - принят и q₁ = 1 - 0.2 = 0.8 - пропущен. Аналогично для следующих вызовов: p₂ = 0.3, q₂ = 0.7 и p₃ = 0.4, q₃ = 0.6,
Вероятность принять вызов за три попытки - P(A).
Событие Р(А) - первый "да" ИЛИ первый "нет" И второй "да" ИЛИ первый "нет" И второй "нет" И третий "да".
Вероятности событий ИЛИ - равна сумме вероятностей каждого.
Вероятности событий И - равны произведению вероятностей каждого.
Р(А) = p₁ + q₁*p₂ + q₁*q₂*p₃
Р(А) = 0,2 + 0,8*0,3 + 0,8*0,7*0,4.
Р(А) = 0,2 + 0,24 + 0,224 = 0,664 - вызов принят - ОТВЕТ
ИЛИ
Вероятность противоположного события Q(A) - вызов не принят за три вызова - И первый "нет" И второй "нет" И третий "нет"
Q(A) = q₁ * q₂ * q₃ = 0.8*0.7*0.6 = 0.336 - не принят.
Р(А) = 1 - Q(A) = 1 - 0.336 = 0.664 - принят.
ответ: 0,664 - вызов будет принят.
Пошаговое объяснение:
Вероятность первого вызова: p₁ = 0.2 - принят и q₁ = 1 - 0.2 = 0.8 - пропущен. Аналогично для следующих вызовов: p₂ = 0.3, q₂ = 0.7 и p₃ = 0.4, q₃ = 0.6,
Вероятность принять вызов за три попытки - P(A).
Событие Р(А) - первый "да" ИЛИ первый "нет" И второй "да" ИЛИ первый "нет" И второй "нет" И третий "да".
Вероятности событий ИЛИ - равна сумме вероятностей каждого.
Вероятности событий И - равны произведению вероятностей каждого.
Р(А) = p₁ + q₁*p₂ + q₁*q₂*p₃
Р(А) = 0,2 + 0,8*0,3 + 0,8*0,7*0,4.
Р(А) = 0,2 + 0,24 + 0,224 = 0,664 - вызов принят - ОТВЕТ
ИЛИ
Вероятность противоположного события Q(A) - вызов не принят за три вызова - И первый "нет" И второй "нет" И третий "нет"
Q(A) = q₁ * q₂ * q₃ = 0.8*0.7*0.6 = 0.336 - не принят.
Р(А) = 1 - Q(A) = 1 - 0.336 = 0.664 - принят.
Разложим число на простые множители и получим.
2438195760 = 1*2*2*2*2*3*3*5*7*11*13*199
Это значит, что оно делится на такие множители:
1 и 2 и 3 и 4=2*2 и 5 и 6=2*3 и 7 и 8=2*2*2 и 9=3*3 и 10=2*5
и 11 и 12=2*2*3 и 13 и 14=2*7 и 15=3*5 и 16=2*2*2*2 и
17 и 18=2*3*3.