Первый аналитический)
1) Если , то
Проверим условие
Таким образом, если , то имеем корень
2) Если , то
Найдем такие значения , при которых
Тогда корни:
Проверим условие
С учетом имеем:
Таким образом, при имеем три корня.
Второй графический)
Рассмотрим две функции:
— линейная функция, график — прямая, параллельная оси абсцисс
Изобразим на координатной плоскости функцию
1) Если , то — квадратичная функция, график — парабола, ветви параболы направлены вверх
2) Если , то — квадратичная функция, график — парабола, ветви параболы направлены вниз
Вершина параболы:
Изобразим данные функции на соответствующих участках (см. вложение).
Уравнение будет иметь три корня, если будет три пересечения графика функции c
Так будет, если или
Решением системы будет
Таким образом, при имеем три корня.
ответ:
5/Задание № 3:
Сумма двух чисел равна 627. Одно из чисел оканчивается нулём. Если этот нуль зачеркнуть, то получится второе число. Найдите разность этих двух чисел.
РЕШЕНИЕ: Пусть первое число 10х. При зачеркивании последнего нуля оно становится в 10 раз меньше, то есть становится равно х. Их сумма по условию:
10х+х=627
11х=627
х=627/11
х=57
Разность чисел 10х-х=9х=9*57=513
ОТВЕТ: 513