
Первый аналитический)
1) Если
, то 





Проверим условие 










Таким образом, если
, то имеем корень 
2) Если
, то 




Найдем такие значения
, при которых 





Тогда корни:

Проверим условие 










![a \in \left[-\dfrac{3}{2}; \ \dfrac{3}{2} \right]](/tpl/images/1359/4428/7966b.png)
С учетом
имеем: 
Таким образом, при
имеем три корня.
Второй графический)
Рассмотрим две функции:

— линейная функция, график — прямая, параллельная оси абсцисс
Изобразим на координатной плоскости функцию 
1) Если
, то
— квадратичная функция, график — парабола, ветви параболы направлены вверх
2) Если
, то
— квадратичная функция, график — парабола, ветви параболы направлены вниз
Вершина параболы: 
Изобразим данные функции на соответствующих участках (см. вложение).
Уравнение
будет иметь три корня, если будет три пересечения графика функции
c 
Так будет, если
или 

Решением системы будет 
Таким образом, при
имеем три корня.
ответ: 
5/Задание № 3:
Сумма двух чисел равна 627. Одно из чисел оканчивается нулём. Если этот нуль зачеркнуть, то получится второе число. Найдите разность этих двух чисел.
РЕШЕНИЕ: Пусть первое число 10х. При зачеркивании последнего нуля оно становится в 10 раз меньше, то есть становится равно х. Их сумма по условию:
10х+х=627
11х=627
х=627/11
х=57
Разность чисел 10х-х=9х=9*57=513
ОТВЕТ: 513