Дано:
D=10√3
Найти а - ребро куба.
Решение.
Пусть а (см) - ребро куба
1) В основании куба будет квадрат со стороной а (см). Найдём диагональ этого основания по теореме Пифагора.
а² + а² = d²
d² = 2a²
d=a√2
2) Диагональ основания, высота куба и диагональ всего куба образуют прямоугольный треугольник, в котором:
а - это катет
a√2 - второй катет
10√3 - диагональ
С теоремы Пифагора получаем уравнение:
a² + (a√2)² = (10√3)²
a² + 2a² = 100·3
3a² = 300
a² =300 : 3
a² = 100
a₁ = √100 = 10 см
а₂ = -√100 = - 10 < 0
ответ: 10 см
104
Пошаговое объяснение:
Задание:
Найти m² +n², если m-n = 8 mn=20
Решение
1-й :
Составим систему уравнений:
m-n = 8 (1)
mn=20 (2)
Из (1) выразим m и подставим в уравнение (2):
m = 8 + n
(8 + n) · n=20
n² + 8n - 20 = 0
n₁,₂ = - 4±√(16+20) = - 4±6
n₁ = -4+6=2 m₁ = 20 : 2 = 10
n₂ = -4-6 = -10, m₂ = 20 : (-10) = -2
Таким образом:
m₁² +n₁² = 10² +2² = 100 + 4 =104
m₂² +n₂² = (-2)² + (-10)² = 4 + 100 =104
2-й :
Воспользуемся формулой:
a²+b² = (a - b)² + 2ab
m² +n² = (m - n)² + 2mn = 8² + 2· 20 = 104
ответ: m² +n² = 104
План:
1) Верный друг
2) Пёс постарел
3) Удивлённый хозяин
4) Новый друг
5) Наставник