7. Мамины бусы состоят из 10 красных и 10 синих бусин в каком-то порядке.
Докажите, что в бусах есть 10 подряд бусин, среди которых поровну синих и
красных.
8. В других маминых бусах есть черные и белые бусины, причем и тех, и других
- четное количество. Обязательно ли эти бусы можно разрезать так, что в
каждой части будет ровно половина черных бусин и ровно половина белых?
9. В ряд сидят 15 мальчиков и 15 девочек. ( a ) Всегда ли из них можно выбрать
10 школьников подряд, чтобы среди них мальчиков и девочек было поровну?
( b ) Всегда ли из них можно выбрать 20 школьников подряд, среди которых
мальчиков и девочек поровну?
Пошаговое объяснение:
7. Мамины бусы состоят из 10 красных и 10 синих бусин в каком-то порядке.
Докажите, что в бусах есть 10 подряд бусин, среди которых поровну синих и
красных.
8. В других маминых бусах есть черные и белые бусины, причем и тех, и других
- четное количество. Обязательно ли эти бусы можно разрезать так, что в
каждой части будет ровно половина черных бусин и ровно половина белых?
9. В ряд сидят 15 мальчиков и 15 девочек. ( a ) Всегда ли из них можно выбрать
10 школьников подряд, чтобы среди них мальчиков и девочек было поровну?
( b ) Всегда ли из них можно выбрать 20 школьников подряд, среди которых
мальчиков и девочек поровну?
Предполагаем, что тут самый простой случай- голубь сидит на краю крыши, а перелетать голуби будут по кратчайшей траектории- по прямой.
В соответствии с этим нарисуем эскиз к этой задаче (схему, где будет видно, что и как расположено). Смотри эскиз внизу- чёрным там изображены дом и фонарь, а цветными кружками и линиями- начальное положение и траектория полёта каждого голубя. Искомое расстояние от дома до зерна обозначено как икс.
Видим два прямоугольных треугольника, катеты которых проходят по поверхности земли, и по стене дома и опоре фонаря.
Гипотенузы этих треугольников- равные (ведь голуби, летящие с одинаковыми скоростями, преодолели это расстояние за одинаковое время).
1) Решить можно просто визуально- заметно, что треугольники одинаковы, и это подтверждает то, что сумма двух катетов, проходящих по земле, равна 31 м- точно так же, как и сумма двух других катетов, тоже равна 24 + 7 = 31 м.
То есть, можно понять, что каждый треугольник будет иметь катеты 24 м и 7 м. Значит, искомое расстояние равно 7 м.
2) Можно составить уравнение, исходя из того, что гипотенузы равны, а значит их квадраты тоже равны, а в прямоугольном треугольнике- квадрат гипотенузы равен сумме квадратов катетов.
Получаем следующее уравнение:
Решаем его:
ответ: Лена рассыпала зерно на расстоянии 7 м от дома.