Для нахождения экстремума функции нескольких переменных необходимо: 1) найти частные производные 2) приравнять их к нулю и составить систему из получившихся уравнений 3) найти решение этой системы - стационарную точку или точки 4) определить характер этой точки - точка максимума, минимума или седловая точка.
1) находим частные производные
2) приравнять их к нулю и составить систему из получившихся уравнений
3) найти решение этой системы Стационарная точка - (-7/3,5/3)
4) определить характер этой точки - точка максимума, минимума или седловая точка. Для определения характера стац. точки составим гессиан - матрицу частных производных второго порядка. Если гессиан состоит из констант, то функция имеет один глобальный экстремум. Если главные миноры матрицы положительные, то точка является точкой минимума. Если знаки главных миноров матрицы чередуются, начиная с минуса, то точка является точкой максимума.
Главные миноры гессиана строго положительные, а сам гессиан состоит из констант. Из этого можно сделать следующий вывод:
в точке (-7/3,5/3) функция имеет глобальный минимум.
Возьмём два наполовину заполненных бидона, их суммарный вес 37 кг, а именно18,500+18,500=37 (кг)Перельём всё молоко в один бидон. Получим полный бидон (35 кг) и пустой бидон. Следовательно, что пустой бидон весит 37-35=2 (кг Предположим, что вес бидона - х кг, тогда вес молока в полном бидоне (35-х) кг, а вес наполовину заполненного бидона масса наполовину заполненного молоком бидона 18,5 кгсогласно этим данным составим и решим уравнение:0,5(35-х)+ х=18,517,5+0,5х=18,5 0,5х=18,5-17,50,5х=1х=1:0,5х=2 (кг) - масса пустого бидона. кг=1 000 г ⇒ 35 кг=35 000 г ⇒ 18кг 500г=18 500 г 18 500+18 500=37 000 (г) или 18 500·2=37 000 (г) или 37 (кг) 37 000-35 000=2 000 (г) или 2 (кг) - масса пустого бидона.ответ : 2 кг весит пустой бидон.
1) найти частные производные
2) приравнять их к нулю и составить систему из получившихся уравнений
3) найти решение этой системы - стационарную точку или точки
4) определить характер этой точки - точка максимума, минимума или седловая точка.
1) находим частные производные
2) приравнять их к нулю и составить систему из получившихся уравнений
3) найти решение этой системы
Стационарная точка - (-7/3,5/3)
4) определить характер этой точки - точка максимума, минимума или седловая точка.
Для определения характера стац. точки составим гессиан - матрицу частных производных второго порядка.
Если гессиан состоит из констант, то функция имеет один глобальный экстремум.
Если главные миноры матрицы положительные, то точка является точкой минимума.
Если знаки главных миноров матрицы чередуются, начиная с минуса, то точка является точкой максимума.
Главные миноры гессиана строго положительные, а сам гессиан состоит из констант. Из этого можно сделать следующий вывод:
в точке (-7/3,5/3) функция имеет глобальный минимум.