Пошаговое объяснение:
Разделим всё уравнение на 1+х², (1+x²>0)
Это уравнение первого порядка называется линейным, так как оно имеет вид: y'+P(x)y=Q(x), где P(x)=1/(1+x²); Q(x)=arctgx/(1+x²)
Его можно решать, например, методом Бернулли:
Сделаем подстановку: y=uv; y'=u'v+uv'
подставим в уравнение:
Далее выносим из 2-го и 3-го слагаемых общий множитель u за скобки (так делается всегда)
то что получилось в скобках приравниваем к нулю:
Полученное уравнение является ДУ с разделяющимися переменными. Нам нужно найти его какое нибудь одно частное решение. Самое простое - это при решении опустить константу С (то есть принять С=0)
Подставляем найденное v в уравнение (*) и так же не забываем, что результат в скобках равен нулю:
полученный интеграл берем по частям: где U=arctgx и dV=e^(arctgx)/(1+x^2)dx
Поэтому прежде стоит найти V
Теперь возвращаемся к решению (**)
Осталось сделать обратную замену:
И на последнем шаге нужно выяснить, есть ли у данного ДУ особые решения.
Если внимательно посмотреть на ход решения, то можно заметить следующее:
когда мы решали уравнение
все последующие действия были с учетом того, что v≠0.
Осталось проверить, будет ли начальное ДУ иметь решение, если v=0?
Последнее равенство не является тождеством! (то есть равенство не выполняется для любых иксов, а только для конкретных). Значит особых решений нет.
V = 240 л (объём бассейна)
v₁ = 40 л/мин (скорость истечения воды из верхнего крана)
v₂ = 20 л/мин (скорость истечения воды из нижнего крана)
1/3 от высоты бассейна (высота расположения нижнего крана)
Схема всего этого- смотри картинку внизу.
Получается, нижняя часть бассейна будет наполняться со скоростью:
v₁ = 40 л/мин (ведь из нижнего крана ещё не будет выливаться вода).
А верхняя часть бассейна будет наполняться со скоростью:
v₁ - v₂ = 40 - 20 = 20 л/мин (разность скоростей наполнения и опустошения бассейна из верхнего и нижнего кранов соответственно)
Объём нижней части бассейна равен:
V₁ = 1/3 * V = 1/3 * 240 = 80 л
Объём верхней части бассейна равен:
V₂ = V - V₁ = 240 - 80 = 160 л
Время наполнения нижней части бассейна равно:
t₁ = V₁ / v₁ = 80 / 40 = 2 мин
Время наполнения верхней части бассейна равно:
t₂ = V₂ / (v₁ - v₂) = 160 / 20 = 8 мин
Время наполнения всего бассейна равно:
t = t₁ + t₂ = 2 + 8 = 10 мин
Можно было конечно это всё подставить сразу в один общий расчёт времени, упростить и посчитав получить то же самое:
50*30% = 15% от первоначальной длины отрезали во второй раз.
50-15 = 35% от первоначальной длины осталось.
Пропорция:
8 м - 35%
x м - 100%
x = 8*100:35 = 800:35 = 800/35 = 22 30/35 = 22 6/7 м - первоначальная длина проволоки.