Можно найти несколько пределов данной числовой последовательности. Для этого нужно посмотреть, что произойдет с ней при стремлении к бесконечности с разными знаками, и в "опасных" точках.
"Опасные" точки сразу видны, это: 1) - знаменатель обращается в 0. 2) - по обычаю проверяется эта точка.
Эта числовая последовательность может быть сведена ко второму замечательному пределу для нахождения пределов: (при →∞)
Выделяем целую часть в дроби:
Используем свойство 2-го замечательного предела, но добавляем степени:
(при →∞)
То есть мы степень не меняли: домножили и разделили.
Посчитаем, что получилось:
(при →∞)
Итак: 1) →+∞ предел равен 2) →-∞ предел равен
3) →0 предел равен:
4) → По правило Лопиталя имеем: 0 (не расписывал, поскольку это очень много и неважно в данном случае, нас это не интересует).
Мы видим, что при стремлении к бесконечности с разными знаками, мы имеем конечное число. В "опасных" точках, скачков нет.
Используя свойства показательной функции, находим, что график делает скачок в некотором интервале (основание должно быть неотрицательным числом, если же взять число из интервала - мы получаем отрицательное основание).
Можно говорить, что данная числовая последовательность является неограниченной (из-за этого интервала).
Если же этого не учитывать, то данная числовая последовательность является ограниченной (это очень грубо).
Это как-то так: 118|2 (и с низу двойки ещё одна чёрточка) ну и вот 118|2 потом пишешь под 118 маленькую чёрточку тоесть минус -.но прям под 118 чтобы было рядом,и пишешь так: 118(минус под 118) потом число которое либо подходит под 118 (и другие числа),либо которое стоит рядом с ним по таблице умноения (смотрится по делителю в этом случае по числу 2) и после того как написал 118 минус 118 теперь ставим чёрточку под второй 118 (снизу) так,чтоб она сопрекосалась с черточкой | и в конце под той чёрточкой (котороя под второй 118) пишем 0 (либо если есть остаток). всё (так делай всё по принцыпу в других выражениях) и да 118÷2=59.
С=π*D
D=С/π
D=4 4/21 : 22/7= 88/21 * 7/22=4/3= 1 1/3 см