Пошаговое объяснение:
x ^ 3 - 3 * x ^ 2 + 2 = 0 ;
( x - 1 ) * ( x ^ 2 - 2 * x - 2 ) = 0 ;
1 ) x - 1 = 0 ;
Известные значения переносим на одну сторону, а неизвестные на другую сторону. При переносе значений, их знаки меняются на противоположный знак. То есть получаем:
x = 0 + 1 ;
x = 1 ;
2 ) x ^ 2 - 2 * x - 2 = 0 ;
Найдем дискриминант квадратного уравнения:
D = b ^ 2 - 4ac = (-2) ^ 2 - 4·1·(-2) = 4 + 8 = 12;
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = ( 2 - √12 ) / ( 2·1 ) = 1 - √3 ≈ -0.732;
x2 = ( 2 + √12) / ( 2·1 ) = 1 + √3 ≈ 2.732;
ответ: х = 1, х = 1 - √3 и х = 1 + √3.
Первый путь решения:
это уравнение в полных дифференциалах.
Потому что
dP/dy=dQ/dx.
где
Р=(2x-y+1)
Q=(2y-x-1)
Надо найти такую функцию U(x;y), что
dU/dx=P
dU/dy=Q.
Тогда решение будет U=C.
С одной стороны
dU/dx=2x-y+1
U= x^2-xy+x +C1(y)
С другой стороны
dU/dy=2y-x-1
U=y^2-xy-y+C2(x)
x^2-xy+x +C1(y)=y^2-xy-y+C2(x)
x^2+x +C1(y)=y^2-y+C2(x)
C1(y)=y^2-y
U= x^2-xy+x +C1(y)= x^2-xy+x +y^2-y=C
Второй путь решения.
Это уравнение, сводящееся к однородному.
(2x-y+1)dx+(2y-x-1)dy=0
сгруппируем так:
(2(x+1/3) - (y-1/3))dx+(2(y-1/3)- (x+1/3))dy=0
замена
a=x+1/3; da=dx
b=y-1/3; db=dy
(2a-b)da+ (2b-a)db=0- однородное
вводим новую функцию
b/a=u
b=ua
db=uda+adu
(2a- ua)da+ (2ua-a)(uda+adu)=0
(2- u)da+ (2u- 1)(uda+adu)=0
(2+ 2u^2- 2u)da+ (2u-1)adu=0
разделяем переменные
∫da/a= 1/2*∫(1-2u)du/( u^2- u+1)
заметим, что (1-2u)du= -d(u^2- u+1)
ln(C*|a|)=-1/2 *ln(C|(u^2- u+1|)
откуда
a=C/√(u^2- u+1)
a*√((b/a)^2- b/a+1)=C
√((b^2- b*a+a^2)=C
(y-1/3)^2- (y-1/3)(x+1/3)+(x+1/3)^2=C^2
Пошаговое объяснение:
Uв=13.8 км/ч
Uм=13.8*6.3=86,94 км/ч
S=?км
решение
1)13,8+86,94=100,74 (всего) км/ч
2)100,74*4,5=453.33-(км)
ответ:S=453.33 км