Для левой части ур-ия применим формулу суммы синусов: Sin x + Sin y = 2Sin ((x + y)/2) · Cos ((x - y)/2) А для правой части формулы понижения степени: Cos² x = (1 + Cos 2x) / 2 Sin² x = (1 - Cos 2x) / 2
То есть: 2Sin 4x · Cos x = 2 · ((1 + Cos 4x)/2 - (1 - Cos 6x)/2))
2Sin 4x · Cos x = 1 + Cos 4x - 1 + Cos 6x
2Sin 4x · Cos x = Cos 4x + Cos 6x
Для правой части ур-ия применим формулу суммы косинусов: Cos x + Cos y = 2Cos ((x + y)/2) · Cos ((x - y)/2)
2Sin 4x · Cos x = 2Cos 5x * Cos x
2Sin 4x · Cos x - 2Cos 5x * Cos x = 0
Выносим общий множитель 2Cos x: 2Cos x · (Sin 4x - Cos 5x) = 0
Отсюда: Cos x = 0 ⇒ x = ±π/2 + 2πk, k — целое
Sin 4x - Cos 5x = 0
Cos (π/2 - 4x) - Cos (5x) = 0
Применяем формулу разности косинусов: Cos x - Cos y = -2Sin ((x + y)/2) · Sin ((x - y)/2)
То есть: -2Sin ((π/2 + x)/2) · Sin ((π/2 - 9x)/2) = 0
1) Sin ((π/2 + x)/2) = 0 (π/2 + x)/2 = πk π/2 + x = 2πk x = -π/2 + 2πk
Всего в числе три цифры. Первое ограничение - две нечетные, и третья четная, так как сумма двух четных тоже четное число. Второе ограничение - сумма двух нечетных должна быть не более 8. Имеем четные цифры - 2, 4, 6 и 8. Если нечетные цифры одинаковые. то для каждой пары будет по 3 варианта Таких пар цифр можно использовать 2 - это для цифр 2 и 1 - 3 варианта. Для примера: 211, 121, 112. для цифр 6 и 3 - 3 варианта Если нечетные цифры разные, то вариантов перестановок из 3 по 3 будет по 6 вариантов для каждой тройки цифр. Можно составить 4 тройки удовлетворяющие условию. Это 4, 1 и 3 или 6, 1 и 5 или 8, 1 и 7 или 8, 3, и 5. Всего вариантов - 2*3+4*6 = 30 - столько разных чисел можно составить по условию задачи. ответ: 30 разных чисел.
понимаю ваш вопрос