М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
pavdora073539
pavdora073539
29.01.2023 09:37 •  Математика

Знайди найбільше число, яке є сумою двох різних двоцифрових чисел. розв"язання має бути у вигляді приклада або і .

👇
Ответ:
вика3844
вика3844
29.01.2023
Я не понимаю инопланетный
4,4(35 оценок)
Открыть все ответы
Ответ:
ezio19
ezio19
29.01.2023
Автомобиль за три дня проехал 750 км. За первые два дня он проехал 535 км. Сколько километров он проезжал в каждый из трёх дней, если в первый день он проехал на 85 км больше, чем во второй?

750-535=215 км -проехал в 3 день
535-85=450-проехал бы за первые дня,если бы проезжал поровну
450:2=225 км-проехал во второй
225+85=310 км-проехал в первый
2) За два дня турист км. В первый день он шёл 7 часов, а во второй - 8 часов. Сколько километров он в каждый из этих дней, если шёл с одной и той же скоростью? 

7+8=15 ч-шёл два дня
75:15=5 км/ч за один час
5х7=35 км в 1 день
5х8=40 км во 2 день 
4,4(14 оценок)
Ответ:
roma1xayatov
roma1xayatov
29.01.2023

Рассмотрим вопрос о распределении в классах по модулю  последовательности

(1)

где  - некоторое число, взаимно простое с модулем. По теореме Эйлера имеем , и поэтому , при любом целом положительном . Следовательно, среди степеней (1) числа  найдется бесконечное количество чисел, сравнимых с 1 по модулю .

Определение 1. Наименьшее натуральное число , для которого справедливо сравнение

(2)

называется показателем числа  по модулю или показателем, которому принадлежит число  по модулю  и обозначается символом .

Очевидно, что. Требование  является существенным.

Определение 2. Если , то  называют первообразным корнем (примитивным) по модулю .

1°. Если , то числа  и  принадлежат по этому модулю одному и тому же показателю, то есть .

Доказательство. Пусть , . Так как , то

.

Следствие 1. Все числа одного и того же класса имеют один и тот же показатель.

2°. Если , то .

Доказательство. Необходимость. Пусть . По теореме о делении с остатком имеем , причем . Поскольку , то . Следовательно, . А это означает, что .

Достаточность. Пусть . Тогда . Поскольку , то , то есть .

Следствие 2. Если  и , то .

Следствие 3. Показатель , которому принадлежит число  по модулю , является делителем числа , то есть .

3°. Если , то .

Следствие 4. Показатель, которому принадлежит по модулю  произведение чисел , равен произведению показателей, которым принадлежат по модулю числа , если показатели попарно взаимно простые.

4°. Если , то .

2. Первообразные корни.

Теорема 1. Если  - первообразный корень, то система  - ПрСВ.

Действительно, в данной системе имеется - вычетов, они не сравнимы и взаимно просты с модулем .

Теорема 2. По любому простому модулю  существует хотя бы один первообразный корень.

Доказательство. Действительно, пусть

(3)

- все различные показатели, которым по модулю  принадлежат числа

. (4)

Пусть  - наименьшее общее кратное этих показателей и  - его каноническое разложение. Каждый множитель  этого разложения делит по меньшей мере одно число  ряда (3), которое, следовательно, может быть представлено в виде: . Пусть  - одно из чисел ряда (4), принадлежащих показателю . Согласно свойству 4° число  принадлежит показателю , согласно свойству 3° произведение  принадлежит показателю . Поэтому, согласно следствия 2 свойства 2° показателей,  - делитель . Но поскольку числа (3) делят , все числа (4) являются решениями сравнения ; поэтому будем иметь . Следовательно,  и  - первообразный корень.

Теорема 3. Если существует хотя бы одно число, принадлежащее по модулю  показателю , то всего классов таких чисел будет .

Следствие 5. Первообразных корней по простому модулю существует .

4,5(39 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ