1)1500÷15=100 (дет)-в час 1 мас/2)1500÷10=150(дет)-в час 2мас 3)100+150=250(дет) 4)1500÷250=6 (ч)
вторая задача
1. Вычислим сколько книг за один день переплетет мастерская, которая может 18 000 книг переплести за 3 дня.
18 000 / 3 = 6000 книг.
2. Определим количество книг, которые переплет за день вторая мастерская.
18 000 / 6 = 3000 книг.
3. Находим сколько книг за день переплетут обе мастерские работая вместе.
6000 + 3000 = 9000 книг.
4. Узнаем за сколько дней переплетут все книги обе мастерские, если будут работать одновременно.
18 000 / 9000 = 2 дня.
ответ: 18 000 книг обе мастерские переплетут за 2 дня.
Пошаговое объяснение:
Неважно как именно записана пропорция, главное, чтобы не меняла ее суть, раскрытая в определении. Поэтому если равенство будет записано в виде частного двух чисел, или же обыкновенными дробями, выражение в любом случае будет являться пропорцией.
2:3=8:12;

При решении пропорций, необходимо знать и оперировать некоторыми терминами. Так, если опираться на пропорцию, которую мы выше взяли за пример выходит, что:
2 и 12 – являются крайними членами пропорции;
3 и 8 – это средние члены пропорции;
Отсюда вытекает равенство, которое является главным выводом понятия пропорции, и выглядит таким образом:
2*12=3*8;
*Произведение cредних членов пропорции равняется произвeдению крайних и наоборот.
*Кроме того, важно запомнить то, что, если средние и крайние члены пропорции поменять местами, то она не изменитcя.
Например, для пропорции a : b = c : d , которая является истинной, вeрно выражение: a * d = b * c
А так же, истинными будут и пропорции a : b = b : d, d : b = c : a, d : c = b : a.
Бывают примеры, в которых неизвестный член пропорции обозначен буквой.
Например: x : 3 = 2 : 12, или же 6 : 3 = x : 12
В первом примере нeизвестeн крайний член пропорции, а во втором — ee cредний член.
Пропорция с одним неизвеcтным иногда встречаeтся в решении задач и примеров. Благодаря следующему правилу, можно найти любой из членов данной пропорции.
Неизвеcтный крайний член пропорции равен чаcтному произведения cредних членов пропорции и извеcтного крайнего члена. И наоборот:
Неизвестный cредний члeн пропорции равен чаcтному произведения крайних членов пропорции и извеcтного среднего члена.
Предположим что у нас есть пропорция, которая выглядит так: a:b=c:d;
Опредeление неизвеcтного члeна данной пропорции:
x : b = c : d, x = (b * c) : d
a : b = c : x, x = (b * c) : a
a : x = c : d, x = (a * d) : c
a : b = x : d, x = (a * d) : b