Пошаговое объяснение:
Эту задачу я называю "погоня" с дистанции в 92 км.
Мото догоняет вело - разность скоростей.
1) Vc = V2 - V1 = 37 - 14 = 23 км/ч - скорость сближения.
2) d = S - Vc*t = S - (V2 - V1)*t - формула дистанции погони в общем виде.
3) d(t) = 92 - 23*t - уравнение для данной задачи.
Вычисляем подставляя значения времени.
4) d(2) = 92 - 23*2 = 92 - 46 = 46 км - ответ.
5) d(3) = 92 - 23*3 = 92 - 69 = 23 км - ответ
Дополнительно найдем время встречи/погони.
6) tc = S/Vc = 92 : 23 = 4 ч - время встречи.
1)Решение:
5/16*4/7 шестнадцать и четыре сокращаются =5/28
2)решение:
2/7:3/7=2/7*7/3 при деление вторая дробь переварачивается. сокрощяем семь на семь =2/3
Второе действие:105:2/3=105/1*3/2 при деление вторая дробь переварачивается 105 и 2 сокрощяется = 105/1=105
3)3/7:2/7=3/7*7/2при делении вторая дробь переварачивается. Семь на семь сокрощяем получается=3/2
Второе действие:84*3/2=84/1*3/2 два и восемдесять четыре сокращаются. =126/1=126
Пошаговое объяснение:
3/2 это дробь если не понятно три вторых и остольные точно такие.
Надеюсь
Удачи
Пишите программу и получаете результат.
const d=0.001;
function f(var x: real): real;
begin
f:=sqr(x)*x-0.3*sqr(x)-4.5*x+1.1;
end;
function f1(var x: real): real;
begin
f1:=(sqr(x)*x-0.3*sqr(x)+1.1)/4.5;
end;
var a,b,c,x: real;
k: integer;
begin
// метод деления пополам
a:=1.0;
b:=0.0; k:=0;
writeln('метод деления пополам');
repeat
c:=(a+b)/2;
if f(c)>0 then b:=c
else a:=c;
inc(k);
writeln('итерация ',k,': x = ',c:5:3,' f(x) = ',f(c):5:3);
until abs(f(c))<d;
writeln('x = ',c:7:5,' f(x) = ',f(c):7:5);
writeln;
// итерационный метод
writeln('итерационный метод');
x:=0.5; k:=0;
repeat
x:=f1(x);
inc(k);
writeln('итерация ',k,': x = ',x:7:5,' f(x) = ',f(x):7:5);
until abs(x-f1(x))<d/100;
writeln('x = ',x:8:6,' f(x) = ',f(x):8:6);
end.
метод деления пополам
итерация 1: x = 0.500 f(x) = -1.100
итерация 2: x = 0.250 f(x) = -0.028
итерация 3: x = 0.125 f(x) = 0.535
итерация 4: x = 0.188 f(x) = 0.252
итерация 5: x = 0.219 f(x) = 0.112
итерация 6: x = 0.234 f(x) = 0.042
итерация 7: x = 0.242 f(x) = 0.007
итерация 8: x = 0.246 f(x) = -0.011
итерация 9: x = 0.244 f(x) = -0.002
итерация 10: x = 0.243 f(x) = 0.002
итерация 11: x = 0.244 f(x) = 0.000
x = 0.24365 f(x) = 0.00022
итерационный метод
итерация 1: x = 0.25556 f(x) = -0.05290
итерация 2: x = 0.24380 f(x) = -0.00044
итерация 3: x = 0.24370 f(x) = 0.00000
x = 0.243702 f(x) = -0.000003