Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.
Алгебра и начала математического анализа. 10 класс : учеб. для общеобразоват. учреждений : базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М.: Просвещение, 2010.- 368 с.: ил.-ISBN 978-5-09-022771-1.
Пусть точка М – середина ребра AS, а точка Е – середина ребра ВС. О – точка пересечения медиан, значит точка О – центр основания пирамиды. SO – высота пирамиды AS – наклонная к плоскости АВС АО – проекция наклонной AS на плоскость АВС Точка К - проекция точки М на плоскость АВС. МЕ – наклонная к плоскости АВС. Значит КЕ – проекция МЕ на плоскость АВС. Угол МЕК – искомый угол. Искомый угол найдём из треугольника МЕК. Для этого найдём МК и КЕ. АЕ – высота равностороннего треугольника АВС. АО – радиус описанной окружности около равностороннего треугольника АВС. Треугольник ASO – прямоугольный. По теореме Пифагора найдём SO. SO = 7 Так как точка М – середина AS, то
Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.
Алгебра и начала математического анализа. 10 класс : учеб. для общеобразоват. учреждений : базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М.: Просвещение, 2010.- 368 с.: ил.-ISBN 978-5-09-022771-1.
Пошаговое объяснение:
думаю свами был мистор голубчик