cos(α+β)+2sinαsinβ=cosαcosβ−sinαsinβ+2sinαsinβ=
cosαcosβ+sinαsinβ=cos(α−β)
если \alpha -\beta=\piα−β=π , то cos(\alpha -\beta ) =cos\pi =-1.cos(α−β)=cosπ=−1.
б)
\frac{sin^{2}\alpha +sin(\pi-\alpha)cos (\frac{\pi }{2} -\alpha) }{tq(\pi+\alpha)ctq( \frac{3\pi }{2} -\alpha ) } = \frac{sin^{2}\alpha +sin\alpha*sin\alpha }{tq\alpha*tq\alpha } =\frac{2sin^{2} \alpha }{tq^{2} \alpha } =\frac{2sin^{2}\alpha }{\frac{sin^{2} \alpha }{cos^{2} \alpha } } =2cos^{2} \alpha .
tq(π+α)ctq(
2
3π
−α)
sin
2
α+sin(π−α)cos(
2
π
−α)
=
tqα∗tqα
sin
2
α+sinα∗sinα
=
tq
2
α
2sin
2
α
=
cos
2
α
sin
2
α
2sin
2
α
=2cos
2
α.
в)
cos7xcos6x+sin7xsin6x=cos(7x-6x)=cosx.cos7xcos6x+sin7xsin6x=cos(7x−6x)=cosx.
1) 0,5 · (-9)⁴ + 1,1 · (-9)³ - 28 = 0,5 · 9⁴ - 1,1 · 9³ - 28 =
= 9³ · (0,5 · 9 - 1,1) - 28 = 9³ · (4,5 - 1,1) - 28 =
= 9³ · 3,4 - 28 = 729 · 3,4 - 28 = 2478,6 - 28 = 2450,6
2)
3) рис. 1
ΔABC - равнобедренный, AB = BC, ∠ABC = 124°
⇒ ∠A = ∠BCA = (180° - ∠ABC) : 2 = (180° - 124°) : 2 = 28°
∠A - вписанный в окружность. равен половине центрального угла ∠BOC, который опирается на ту же дугу, что и ∠A
∠BOC = 2∠A = 2 · 28° = 56°
4) рис. 2
Трапеция ABCD, AD║BC, AD = 6, BC = 3, S = 27
У ΔABC и трапеции ABCD одинаковая высота h, которую можно найти из формулы площади трапеции :
5) рис. 3
ΔABH : ∠AHB=90°, AB=60, AH = 9√39. Теорема Пифагора
BH² = AB² - AH² = 60² - (9√39)² = 3600 - 3159 = 441
BH = √441 = 21
6) рис.4
∠ABC - вписанный, равен половине дуги, на которую опирается.
⇒ ∪ ADC = 2∠ABC = 2 · 112° = 224°
∠CAD - вписанный, равен половине дуги, на которую опирается.
⇒ ∪ DC = 2∠CAD = 2 · 70° = 140°
∪ AD = ∪ ADC - ∪ DC = 224° - 140° = 84°
∠ABD - вписанный, равен половине дуги, на которую опирается.
⇒ ∠ABD = ∪ DC : 2 = 84° : 2 = 42°
7) рис.5
Средняя линия треугольника отсекает от него подобный треугольник, площадь которого в 4 раза меньше площади большого треугольника
4 дм < 41 см
99 см < 1 м
7 дм 6 см > 69 см 6 мм
8 м 5 см = 80 дм 5 см
46 см < 6 дм 4 см
4 дм 80 мм = 48 см